Methodology for Quantification of Technological Processes in Passenger Railway Transport Using Alternatively Powered Vehicles
Abstract
:1. Introduction
2. Literature Review
2.1. Alternative Propulsions in Railway Transport
- mount enough energy to one-way travel,
- quick charging at every few stations,
- storage battery power supply wagon connection,
- line electrification except tunnels,
- full line electrification.
2.2. Railway Transport Local Processes Technology and Its Quantification
3. Methodology
3.1. Technological Process Mapping
- Input parameters focused on the technological processes:
- 2.
- Creation of an optimal workflow:
- 3.
- Activity duration normalisation:
- Chronometric method—repeated recordings of activities’ durations performed at one specific workplace (e.g., train cabin);
- Predetermined times method—summary of elements’ durations for which there are objective duration normatives;
- Instantaneous observing method—repeated recordings of the activities’ duration at different times and conditions throughout the workplace, allowing for the capture of parallel activities;
- Compendiums of performance norms and normatives—compendiums that have objectively set durations of elements or activities [33].
- 4.
- Chronological evaluated workflow:
3.2. The Critical Path Calculation
- aij—optimistic duration, i.e., in the most favourable conditions,
- bij—pessimistic duration, i.e., in the most unfavourable conditions,
- mij—modal, the most expected duration of the activity,
- where aij ≤ mij ≤ bij [34].
- Edge-oriented network graph:
- 2.
- Forward calculation of CP:The second phase is the so-called forward calculation from the starting vertex to the ending vertex, composed of the following steps:
- 2.a.
- The earliest start of the whole process, according to the condition:
- TEi—mean value of the earliest time of vertex i,
- ESij—mean value of the earliest start time of activity ij.
- 2.b.
- The earliest start of the whole process, according to the condition:
- EFij—median earliest activity end time.
- 2.c.
- The mean value of the earliest possible vertex execution time TEj, wherein
- 2.d.
- The mean value of the earliest possible start time of other activities, wherein
- 2.e.
- By repeating the previous steps, the mean value of the earliest possible times of all activities and nodes is determined, with the last terminal vertex node n representing the mean value of the completion time of the entire TEn process, which also corresponds to the duration of the critical path of the MCP.
- 3.
- Backward calculation of CP:The third phase is the so-called backward calculation from the end vertex to the starting vertex, composed of the following steps:
- 3.a.
- Mean value of the latest completion time of the whole process TLn, conditioned by
- LFij—mean value of the latest possible end time of the activity.
- 3.b.
- Mean latest start times of other LSij activities, according to the relation:
- 3.c.
- The mean value of the latest permissible vertex time TLi:
- LSij—the latest possible start of the activity.
- 3.d.
- Mean value of the latest permissible end of activity LFij, where
- TLj—mean value of the latest permissible vertex time j.
- 3.e.
- Previous calculations must be repeated until the first vertex is met.
- 4.
- Determination of the critical pathThe fourth phase is the calculation of the total and interference margin and the determination of the critical path itself, consisting of 3 steps:
- 4.a.
- The mean value of the interference margin Ri for each vertex according to the relation:
- 4.b.
- The CP passes through vertices where Ri = 0 and the definitive duration of the process MCP is
- μija—duration agent-dependent activities,
- μij0—duration of independent activities.
3.3. Application of Critical Path Outcomes
- Process duration curve:
- Mna—total process duration normative concerning the number of axles,
- b—duration of independent actions, the sum of μij0 from CP,
- a—parameter of the agent-dependent activities, sum of μijd from CP.
- ln—length of non-electrified section,
- Rd/Rs—dynamic/static recharging speed, Rd = 2.64 km/min and Rs = 3.3 km/min [3],
- Tje—journey time on electrified section.
- 2.
- Total normative rounding
- Mnad—duration rounded down.
4. Data and Results
- EMU—Škoda RegioPanter 661, nat = 12 axles,
- BEMU—Škoda RegioPanter BEMU, nat = 8 axles,
- FCMU—Alstom Coradia iLint, nat = 8 axles,
- HDMU—J-TREC Sustina Hybrid, nat = 8 axles [37].
4.1. Technological Process of the Turnaround Train
4.2. Technological Process of the Starting Train
4.3. Technological Process of the Ending Train
4.4. Process Duration Rounding
5. Discussion
6. Conclusions
- a new and simple method for quantification of local processes, suitable for transport carriers or technologists;
- a modifiable method for evaluating local processes;
- the ability to determine reliable technology times concerning various external influences during the operation of MU with various propulsion system;
- seamless planning, preparation and implementation of alternative propulsion in real PRT operations;
- a method for controlling, updating and optimising processes and activities,
- the possibility of creating general valid overall normative for a specific propulsion and process, e.g., one time for several stations;
- reducing operational risks associated with non-compliance with process times and optimal working procedures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kendra, M.; Skrúcaný, T.; Dolinayová, A.; Čamaj, J.; Jurkovič, M.; Csonka, B.; Abramović, B. Environmental burden of different transport modes—Real case study in Slovakia. Transp. Res. 2023, 114, 103552. [Google Scholar] [CrossRef]
- Barbosa, F.C. Hydrogen Powered Rail Traction Technology Review-The Pathways to Reduce the Rail Environmental Footprint. In Proceedings of the 2024 Joint Rail Conference, Columbia, SC, USA, 13–15 May 2024. [Google Scholar]
- Pohl, J. Elektrická Osobní Železniční Doprava na Tratích bez Liniové Elektrizace. In Vědeckotechnický Sborník. 2020. Available online: https://www.spravazeleznic.cz/documents/50004227/117048102/Eektrick%C3%A1+osobn%C3%AD+%C5%BEelezni%C4%8Dn%C3%AD+doprava+na+trat%C3%ADch+bez+liniov%C3%A9+elektrizace.pdf/ffb17a49-bf31-4c40-bbf4-4d9ecfa4090a (accessed on 15 January 2024).
- Pribula, D.; Kendra, M. Analysis of Current State of Alternative Propulsion in a Sector of Passenger Railway Transport. Transp. Tech. Technol. 2023, 19, 18–22. [Google Scholar] [CrossRef]
- Pagenkopf, J.; Kaimer, S. Potentials of alternative propulsion systems for railway vehicles—A techno-economic evaluation. In Proceedings of the Ninth International Conference on Ecological Vehicles and Renewable Energie, Monte Carlo, Monaco, 25–27 March 2014; pp. 1–8. [Google Scholar]
- Paček, L. Vplyv Alternatívnych Pohonov Železničných Vozidiel na Prevádzku Železničnej Osobnej Dopravy. Bachelor’s Thesis, Žilinská Univerzita v Žiline, Žilina, Slovakia, 27 April 2024. [Google Scholar]
- Sládek, F.; Nachtigall, P.; Vojtek, M. Představení vzájemných vazeb mezi vozidly s alternativními pohony, infrastrukturou a náklady. In Vědeckotechnický Sborník Správy Železnic, Státní Organizace č. 5/2021; Správa železníc: Prague, Czuech Republic, 2021; pp. 60–71. [Google Scholar]
- Nedeliaková, E.; Hranický, M.P.; Valla, M. Risk identification methodology regarding the safety and quality of railway services. Prod. Eng. Arch. 2022, 28, 21–29. [Google Scholar] [CrossRef]
- Vehicle Circulation Plan of ZSSK, a.s, (Plán Obehov Vozidiel ZSSK, a.s.); 2_143_UP_v3; Železničná Spoločnosť Slovensko, a.s.: Bratislava, Slovakia, 2023.
- Mwambeleko, J.J.; Somsai, K.; Kulworawanichpong, T. The potential of battery electric multiple units to replace diesel commuter trains and reduce fuel cost. In Proceedings of the 2016 IEEE/SICE International Symposium on System Integration (SII), Sapporo, Japan, 13–15 December 2016. [Google Scholar]
- Ministerstvo Dopravy. Koncepce Rozvoje Elektrické Trakce v České Republice. Available online: https://zdopravy.cz/wp-content/uploads/2023/11/Koncepce-rozvoje-elektricke-trakce-2023.pdf (accessed on 27 November 2023).
- Streuling, C.; Pagenkopf, J.; Schenker, M.; Lakeit, K. Techno-Economic Assessment of Battery Electric Trains and Recharging Infrastructure Alternatives Integrating Adjacent Renewable Energy Sources. Sustainability 2021, 13, 8234. [Google Scholar] [CrossRef]
- Dostál, L. Využití Alternativních Pohonů v Železničním Spojení Jihlava—Tábor. Bachelor’s Thesis, České Vysoké Učení Technické v Praze, Prague, Czech Republic, 8 August 2022. [Google Scholar]
- Ogasa, M. Case study of four battery-powered methods to run electric trains on non-electrified lines. In Proceedings of the 2022 International Power Electronics Conference (IPEC-Himeji 2022-ECCE Asia), Himeji, Japan, 15–19 May 2022; pp. 1095–1100. [Google Scholar]
- Fedele, E.; Di Pasquale, A.; Iannuzzi, D.; Pagano, M. Integration of onboard batteries and supercapacitors based on the Multi-Source Inverter for Light Rail Vehicles. In Proceedings of the 2022 International Power Electronics Conference, Himeji, Japan, 15–19 May 2022; pp. 698–704. [Google Scholar]
- Zhong, Z.; Yang, Z.; Fang, X.; Lin, F.; Tian, Z. Hierarchical Optimization of an On-Board Supercapacitor Energy Storage System Considering Train Electric Braking Characteristics and System Loss. IEEE Trans. Veh. Technol. 2020, 69, 2576–2587. [Google Scholar] [CrossRef]
- Ding, D.; Wu, X.-Y. Hydrogen fuel cell electric trains: Technologies, current status, and future. Appl. Energy Combust. Sci. 2024, 17, 100255. [Google Scholar] [CrossRef]
- Jafri, N.H.; Gupta, S. Technical viability study of fuel cell as an alternative to diesel in Diesel Electric Multiple Units (DEMUs) for suburban rail transportation. In Proceedings of the 2017 International Conference on Signal Processing and Communication, Coimbatore, India, 28–29 July 2017; pp. 181–185. [Google Scholar]
- Olmos, J.; Gandiaga, I.; Lopez, D.; Larrea, X.; Nieva, T.; Aizpuru, I. In-depth Life Cycle Cost Analysis of a Li-ion Battery-based Hybrid Diesel-Electric Multiple Unit. In Proceedings of the Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 18 November–16 December 2020; pp. 1–5. [Google Scholar]
- Kapetanović, M.; Vajihi, M.; Goverde, R.M.P. Analysis of Hybrid and Plug-In Hybrid Alternative Propulsion Systems for Regional Diesel-Electric Multiple Unit Trains. Energies 2021, 14, 5920. [Google Scholar] [CrossRef]
- Bulková, Z. Possibilities of Implementing Augmented Reality in Railway Freight Transport. Transp. Tech. Technol. 2023, 13, 1–7. [Google Scholar]
- Usmani, F. PERT: Definition, PERT Formula, PERT Chart, Technique & Example. PM Study Circle. Available online: https://pmstudycircle.com/pert-program-evaluation-and-review-technique/ (accessed on 7 December 2022).
- Jacob, Y.W.; Boureima, S.; Moumouni, Z. Comparative analysis with the PERT method: Times certain vs uncertain. Adv. Appl. Discret. Math. 2024, 41, 115–134. [Google Scholar] [CrossRef]
- Tomii, J.; Zhou, L.J. Depot shunting scheduling using combined genetic algorithm and PERT. Comput. Railw. 2000, 7, 437–446. [Google Scholar]
- Kontrilková, L.; Dorda, M.; Hořínka, J.; Kubáň, M. Application of Network Analysis Methods to the Process of Preparing the Operation of a New Scheduled Flight Connection for Passenger Transport. In Proceedings of the International Conference on Mathematical Methods in Economics 2020 (MME 2020), Brno, Czech Republic, 9–11 September 2020; pp. 294–300. [Google Scholar]
- Anondho, B.; Latief, Y.; Mochtar, K.; Aditya, J. Simplified activities model for earned duration calculation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 508, 012014. [Google Scholar] [CrossRef]
- Thomas, L.; Kumar, M.V.M.; Annappa, M. Efficient Process Mining through Critical Path Network Analysis. In Proceedings of the International Advance Computing Conference (IACC), Gurgaon, India, 21–22 February 2014; pp. 511–516. [Google Scholar]
- Abramović, B.; Zitricky, V.; Biškup, V. Organisation of railway freight transport: Case study CIM/SMGS between Slovakia and Ukraine. Eur. Transp. Res. Rev. 2016, 8, 27. [Google Scholar] [CrossRef]
- Vávra, R.; Janoš, V. Delay Management in Regional Railway Transport. Appl. Sci. 2022, 12, 457. [Google Scholar] [CrossRef]
- Matuszak, Z.; Bartosz, M.; Barta, D. The Application of Selected Network Methods for Reliable and Safe Transport by Small Commercial Vehicles. Manag. Syst. Prod. Eng. 2018, 23, 198–204. [Google Scholar] [CrossRef]
- Gašparík, J.; Meško, P.; Zitrický, V. Mechanika v Železničnej Deprave; EDIS—Vydavateľské Centrum ŽU: Žilina, Slovakia, 2016; ISBN 978-80-554-1274-0. [Google Scholar]
- Majerčak, J.; Gašparík, J.; Blaho, P. Posun. In Železničná Dopravná Prevádzka—Technológia Železničných Staníc; EDIS—Vydavateľské Centrum ŽU: Žilina, Slovakia, 2008; ISBN 978-80-8070-887-0. [Google Scholar]
- Mokošák, L. Zostava Typových Technologických Grafov Obsluhy Súprav Vlakov Osobnej Dopravy. Diploma Thesis, Žilinská Univerzita v Žiline, Žilina, Slovakia, 29 May 2020. [Google Scholar]
- Kubíková, D. Metódy Plánovania Projektov Využívajúce Sieťové Grafy; Masaryková Univerzita: Brno, Czech Republic, 2009. [Google Scholar]
- FHI. Metódy Sieťovej Analýzy. Available online: http://fhi.sk/files/katedry/kove/predmety/Sietova_analyza/CPM_PERT.pdf (accessed on 15 March 2024).
- Hokina, B. Efektívnosť Liberalizácie Osobnej Železničnej Dopravy na Trati Bratislava—Komárno; Žilinská univerzita v Žiline: Žilina, Slovakia, 2 June 2020. [Google Scholar]
- Bittner, J.; Křenek, J.; Skála, B.; Šrámek, M. Malý Atlas Lokomotív; Gradis Bohemia: Prague, Czech Republic, 2023; ISBN 978-80-86925-21-9. [Google Scholar]
- Stanovenie Nevyhnutných Technologických Časov Rušňovodičov; 2_143_UP_v3; Železničná Spoločnosť Slovensko, a.s.: Bratislava, Slovakia, 2022.
- Böhm, M.; Del Rey, A.F.; Pagenkopf, J.; Varela, M.; Herwartz-Polster, S.; Calderón, B.N. Review and comparison of worldwide hydrogen activities in the rail sector with special focus on on-board storage and refueling technologies. Int. J. Hydrog. Energy 2022, 47, 38003–38017. [Google Scholar] [CrossRef]
- Indeed Editorial Team. Understanding PERT vs. CPM (With Definitions and Benefits). Indeed Career Guide. Available online: https://ca.indeed.com/career-advice/career-development/pert-vs-cpm (accessed on 28 August 2023).
- Foltán, M.; Železničná spoločnosť Slovensko, a.s., Žilina, Slovakia. Technologický postup—Čistenie ŽKV. Foltan.Marek@slovakrail.sk. Mail Communication, 2024. [Google Scholar]
Battery | Hydrogen | ICE—Hybrid | ||||||
---|---|---|---|---|---|---|---|---|
MU Config. Type | Energy Source | Number of Modes | MU Config. Type | Energy Source | Number of Modes | MU Config. Type | Energy Source | Number of Modes |
Battery (BMU) | ES | 1 | Fuel-cell (FCMU) | H2, ES | 2 | Electro-diesel (EDMU) | ICE, LE | 2 |
Battery electric (BEMU) | ES, LE | 2 | Fuel-cell + BEMU (FCEMU) | H2, ES, LE | 3 | Hybrid-diesel (HDMU) | ICE, ES | 2 |
Hybrid electro-diesel (HDMU) | ICE, ES, LE | 3 |
Outcome of 4th Phase of Process Mapping | ||||||||
---|---|---|---|---|---|---|---|---|
Activity ID (ij) | Activity Name | Prede- Cessors | aij | bij | mij | μi | σ2ij | σij |
[min] | ||||||||
i1 | Activity i1 | - | ai1 | bi1 | mi1 | μi1 | σ2i1 | σi1 |
i2 | Activity i2 | - or ij | ai2 | bi2 | mi2 | μi2 | σ2i2 | σi2 |
i3 | Activity i3 | - or ij | ai3 | bi3 | mi3 | μi3 | σ2i3 | σi3 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
nm | Activity im | ij, ij, ij, … | aim | bim | mim | μim | σ2im | σim |
Full Activity Name | Abbrevation | EMU 12 Axles | BEMU 8 Axles | HMU 8 Axles | HDMU 8 Axles | ||||
---|---|---|---|---|---|---|---|---|---|
μij | σij | μij | σij | μij | σij | μij | σij | ||
A brake test-complete | BTC | 3.083 | 0.250 | 3.083 | 0.250 | 3.083 | 0.250 | 3.083 | 0.250 |
A brake test-simple | BTS | 0.917 | 0.017 | 0.917 | 0.017 | 0.917 | 0.017 | 0.917 | 0.017 |
A departure train path | DTP | 1.417 | 0.583 | 1.417 | 0.583 | 1.417 | 0.583 | 1.417 | 0.583 |
A stand-by mode (de)activation | SB | 0.319 | 0.038 | 0.319 | 0.038 | 0.000 | 0.000 | 0.000 | 0.000 |
Activation of the cabin (cockpit) | AOC | 1.698 | 0.048 | 1.758 | 0.035 | 1.702 | 0.032 | 1.695 | 0.018 |
Activation of the MU | AMU | 1.150 | 0.067 | 1.113 | 0.033 | 1.142 | 0.025 | 1.217 | 0.047 |
Boarding and unlocking of MU | BU | 0.427 | 0.030 | 0.427 | 0.030 | 0.430 | 0.030 | 0.430 | 0.030 |
Conductors introduction to traindriver | CI | 0.123 | 0.007 | 0.123 | 0.007 | 0.123 | 0.007 | 0.123 | 0.007 |
Deactivation of the cabin | DOC | 1.430 | 0.063 | 1.427 | 0.047 | 1.412 | 0.038 | 1.350 | 0.033 |
Deactivation of the MU | DMU | 1.202 | 0.042 | 1.217 | 0.033 | 1.217 | 0.033 | 1.237 | 0.033 |
Deferral of personal things | DPT | 0.425 | 0.042 | 0.425 | 0.042 | 0.425 | 0.042 | 0.425 | 0.042 |
Departing train process | DT | 0.500 | 0.000 | 0.500 | 0.000 | 0.500 | 0.000 | 0.500 | 0.000 |
Diesel refuelling | DR | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 14.833 | 0.833 |
Electric cable connection (static plug) | ECC | 0.000 | 0.000 | 0.000 | 0.000 | 1.627 | 0.024 | 1.491 | 0.043 |
Electric cable disconnection | ECD | 0.000 | 0.000 | 0.000 | 0.000 | 1.627 | 0.024 | 1.491 | 0.043 |
Engine/FC preheating | EFP | 0.000 | 0.000 | 0.000 | 0.000 | 8.167 | 0.500 | 9.750 | 0.917 |
Faecal maintenance | MF | 5.737 | 0.437 | 5.737 | 0.437 | 5.737 | 0.437 | 5.737 | 0.437 |
Getting off passengers | GOf | 1.083 | 0.250 | 1.083 | 0.250 | 1.083 | 0.250 | 1.083 | 0.250 |
Getting on passengers | Gon | 2.333 | 0.667 | 2.333 | 0.667 | 2.333 | 0.667 | 2.333 | 0.667 |
Hydrogen refuelling | HR | 0.000 | 0.000 | 0.000 | 0.000 | 15.333 | 1.333 | 0.000 | 0.000 |
Hygienic maintenance | MH | 15.840 | 0.480 | 10.560 | 0.320 | 10.560 | 0.320 | 10.560 | 0.320 |
Informing of passengers | IP | 2.167 | 0.500 | 2.167 | 0.500 | 2.167 | 0.500 | 2.167 | 0.500 |
Interior tempering/AC-ing | ITA | 7.833 | 2.500 | 7.833 | 2.500 | 7.833 | 2.500 | 7.833 | 2.500 |
Leaving of the MU | LM | 0.292 | 0.015 | 0.292 | 0.015 | 0.292 | 0.015 | 0.292 | 0.015 |
Leaving of the MU with a locking | LML | 0.427 | 0.030 | 0.427 | 0.030 | 0.427 | 0.030 | 0.427 | 0.030 |
Readiness to shunting report | RRS | 0.083 | 0.003 | 0.083 | 0.003 | 0.083 | 0.003 | 0.083 | 0.003 |
Shunting to refuelling stations | Sr | 3.307 | 0.116 | 3.307 | 0.116 | 3.307 | 0.116 | 3.307 | 0.116 |
Shunting to sidling/depot | Ss | 2.700 | 0.067 | 2.700 | 0.067 | 2.700 | 0.067 | 2.700 | 0.067 |
Shunting to station | Sst | 4.885 | 0.378 | 4.885 | 0.378 | 4.885 | 0.378 | 4.885 | 0.378 |
Shunting train path | STP | 1.133 | 0.367 | 1.133 | 0.367 | 1.133 | 0.367 | 1.133 | 0.367 |
Static recharging time | Rs | 0.000 | 0.000 | 9.855 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Submission of documentation to driver | SD | 0.122 | 0.005 | 0.122 | 0.005 | 0.122 | 0.005 | 0.122 | 0.005 |
Take the personal things | TPT | 0.425 | 0.042 | 0.425 | 0.042 | 0.425 | 0.042 | 0.425 | 0.042 |
Technical inspection-external | TIE | 4.396 | 0.100 | 2.931 | 0.067 | 3.173 | 0.059 | 4.067 | 0.093 |
Technical inspection-internal | TII | 1.822 | 0.082 | 1.215 | 0.055 | 1.204 | 0.042 | 1.209 | 0.041 |
The MU interior inspection | MII | 2.164 | 0.088 | 1.443 | 0.059 | 1.443 | 0.059 | 1.439 | 0.049 |
The MU state familiarisation | MSF | 0.745 | 0.025 | 0.752 | 0.018 | 0.752 | 0.018 | 0.752 | 0.018 |
Train arrival at the station | TA | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Train documentation (conductor) | TD | 0.878 | 0.038 | 0.585 | 0.025 | 0.585 | 0.025 | 0.585 | 0.025 |
Train documentation in the cabin (driver) | TDC | 0.381 | 0.037 | 0.381 | 0.037 | 0.390 | 0.037 | 0.390 | 0.037 |
Unblocking of passengers’ doors | UD | 0.080 | 0.000 | 0.080 | 0.000 | 0.080 | 0.000 | 0.080 | 0.000 |
Walking between cabins | WBT | 1.514 | 0.022 | 1.009 | 0.015 | 1.026 | 0.015 | 1.039 | 0.020 |
Water refuelling for the bathroom | WR | 12.167 | 0.833 | 12.167 | 0.833 | 12.167 | 0.833 | 12.167 | 0.833 |
ID | Name | PR | ID | Name | PR | ID | Name | PR | Value | EMU | BEMU | FCMU | HDMU |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11 | TA+UD | - | 14 | WBT | 13 | 17 | TDC | 16 | MCP | 7.4920 | 7.044/TSR | 6.999 | 6.943 |
31 | Gon+Gof | 11 | 15 | AOC | 14 | 24 | SD | 17, 23 | Σμa | 1.514 | 1.009 | 1.026 | 1.039 |
21 | MII | 11 | 23 | IP | 22 | 18 | DPT | 24 | Σμ0 = b | 5.978 | 6.035 | 5.973 | 5.904 |
12 | DOC | 11 | 16 | BTS | 15 | 42 | DT | 31, 41, 24, 18 | a | 0.126 | 0.126 | 0.128 | 0.130 |
13 | DPT | 12 | 41 | DTP | 11 | 61 | Rs (KN) | - | σCP | 0.270 | 0.196 | 0.184 | 0.171 |
22 | TD | 21 | [min] | ||||||||||
CP | EMU | 11 → 12 → 13 → 14 → 15 → 16 → 17 → 24 → 18→ 42 | Function | EMU | 0.126 × ldMU + 5.978; (±0.270) | ||||||||
BEMU | BEMU | 0.126 × ldMU + 6.035; (±0.196) or TSR | |||||||||||
FCMU | FCMU | 0.128 × ldMU + 5.973; (±0.184) | |||||||||||
HDMU | HDMU | 0.130 × ldMU + 5.904; (±0.171) |
ID | Name | PR | ID | Name | PR | ID | Name | PR | Value | EMU | BEMU | FCMU | HDMU |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11 | TIE | - | 41 | STP | 11 | 31 | Gon | 111 | MCP | 20.347 | 20.894 | 28.552 | 28.910 |
12 | ECC | 11 | 52 | EPH | 18 | 23 | TD | 22 | Σμa | 7.732 | 5.155 | 7.030 | 7.805 |
13 | BU | 12 | 19 | BTC | 18 | 113 | WBT | 112 | Σμ0 = b | 15.615 | 15.739 | 21.522 | 21.105 |
14 | TII | 13 | 42 | RRS | 19, 52, 41 | 24 | IP | 23 | a | 0.644 | 0.644 | 0.879 | 0.976 |
15 | DPT | 14 | 110 | Sst | 42 | 114 | AOC | 113 | σCP | 1.142 | 1.024 | 1.733 | 1.714 |
16 | AOC | 15 | 111 | AT+UD | 110 | 25 | SD | 114, 24 | [min] | ||||
17 | MSF | 16 | 21 | CI | 111 | 43 | DTP | 110 | |||||
51 | ITA | 15 | 22 | DPT | 21 | 44 | DT | 51, 31, 25, 43 | |||||
18 | AMU | 17 | 112 | DOC | 21 | ||||||||
CP | EMU | 11 → 13 → 14 → 15 → 16 → 17 → 18 → 19 → 42 → 110 → 111 → 21 → 112 → 113 → 114 → 25 → 44 | Function | EMU | 0.644 × ldMU + 15.615; (±1.142) | ||||||||
BEMU | BEMU | 0.644 × ldMU + 15.739; (±1.024) | |||||||||||
FCMU | 11 → 12 → 13 → 14 → 15 → 16 → 17 → 18 → 52 → 42 → 110 → 111 → 21 → 112 → 113 → 114 → 25 → 44 | FCMU | 0.879 × ldMU + 21.552; (±1.733) | ||||||||||
HDMU | HDMU | 0.976× ldMU + 21.105; (±1.714) |
ID | Name | PR | ID | Name | PR | ID | Name | PR | Value | EMU | BEMU | FCMU | HDMU |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11 | AT+UPD | - | 12 | Sr | 23,42,31 | 51 | MH | 15 | MCP | 38.360 | 32.066 | 35.235 | 33.728 |
31 | Gof | 11 | 13 | WR | 12 | 01 | MF | 15 | Σμa | 18.882 | 12.588 | 12.588 | 12.584 |
41 | STP | 11 | 14 | RD/RH | 12 | 17 | TDC | 16 | Σμ0 = b | 19.478 | 19.478 | 22.647 | 21.144 |
21 | MII | 11 | 43 | STP | 12 | 18 | DMU/SB | 17 | a | 1.574 | 1.574 | 1.574 | 1.573 |
22 | TD | 21 | 44 | RTS | 13, 14, 43 | 19 | TPT | 18 | σCP | 1.712 | 1.510 | 2.010 | 1.500 |
42 | RTS | 41 | 15 | Srs | 44 | 110 | ECD | 19 | [min] | ||||
23 | TPT | 22 | 16 | COD | 15 | 52 | LL | 110, 51, 01, 19 | |||||
24 | LM | 23 | |||||||||||
CP | EMU | 11 → 21 → 22 → 23 → 24 → 12 → 13 → 44 → 15 → 51 → 52 | Function | EMU | 1.574 × ldMU + 19.478; (±1.712) | ||||||||
BEMU | BEMU | 1.574 × ldMU + 19.478; (±1.510) | |||||||||||
FCMU | 11 → 21 → 22 → 23 → 24 → 12 → 14 → 44 → 15 → 51 → 52 | FCMU | 1.574 × ldMU + 22.647; (±1.574) | ||||||||||
HDMU | HDMU | 1.573 × ldMU + 21.144; (±1.500) |
Multiple Unit | Turnaround Train Process | Starting Train Process | Ending Train Process | ||||||
---|---|---|---|---|---|---|---|---|---|
MCP Round | Mna | MnaR | MCP Round | Mna | MnaR | MCP Round | Mna | MnaR | |
EMU BA/KN | 7.5 | 7.997 | 8.0 | 20.5 | 25.919 | 26.0 | 38.0 | 44.654 | 44.5 |
BEMU—BA | 7.0 | 8.053 | 8.0 | 21.0 | 26.043 | 26.0 | 32.0 | 44.654 | 44.5 |
BEMU—KN | 9.5 | 13.582 | 14.0 | ||||||
FCMU BA/KN | 7.0 | 8.025 | 8.5 | 28.5 | 35.582 | 35.5 | 35.0 | 47.823 | 47.5 |
HDMU BA/KN | 7.0 | 7.982 | 8.0 | 29.0 | 36.715 | 37.0 | 33.5 | 46.312 | 46.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kendra, M.; Pribula, D.; Skrúcaný, T. Methodology for Quantification of Technological Processes in Passenger Railway Transport Using Alternatively Powered Vehicles. Sustainability 2024, 16, 7239. https://doi.org/10.3390/su16167239
Kendra M, Pribula D, Skrúcaný T. Methodology for Quantification of Technological Processes in Passenger Railway Transport Using Alternatively Powered Vehicles. Sustainability. 2024; 16(16):7239. https://doi.org/10.3390/su16167239
Chicago/Turabian StyleKendra, Martin, Daniel Pribula, and Tomáš Skrúcaný. 2024. "Methodology for Quantification of Technological Processes in Passenger Railway Transport Using Alternatively Powered Vehicles" Sustainability 16, no. 16: 7239. https://doi.org/10.3390/su16167239
APA StyleKendra, M., Pribula, D., & Skrúcaný, T. (2024). Methodology for Quantification of Technological Processes in Passenger Railway Transport Using Alternatively Powered Vehicles. Sustainability, 16(16), 7239. https://doi.org/10.3390/su16167239