Next Article in Journal
Nature-Based Solutions to Regenerate Mediterranean Cities: A Case Study in Catania, Sicily
Previous Article in Journal
Choosing the Bicycle as a Mode of Transportation, the Influence of Infrastructure Perception, Travel Satisfaction and Pro-Environmental Attitude, the Case of Milan
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Correction

Correction: Yang et al. Operational Decisions on Remanufacturing under the Product Innovation Race. Sustainability 2023, 15, 4920

1
College of Management Science, Chengdu University of Technology, Chengdu 610059, China
2
School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China
3
School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 611731, China
*
Author to whom correspondence should be addressed.
Sustainability 2023, 15(16), 12116; https://doi.org/10.3390/su151612116
Submission received: 3 July 2023 / Accepted: 10 July 2023 / Published: 8 August 2023
The authors would like to make the following corrections about the published paper [1]. The changes are as follows:
(1)
Replacing the “Remanufacturing Scenario” in Table 3.
Remanufacturing Scenario
(i) For γ ( b γ + b 2 c + b 2 c a b b a b 2 γ c b γ c n + c n + b c n a + c n ) 1 + a < c r < γ c n 1 + a ,
Equilibrium decisions: q 1 R i = 1 c n b c 2 , q n R i = 1 + a c n + c r γ 2 1 + a γ , q r R i = γ c n c r a c r 2 γ ( 1 + a γ ) , K R i = ρ ( 1 + a 2 γ + 2 c n c r a γ c n 2 c r 2 + γ 2 ) 2 a + 2 1 γ 1 + a γ .
Equilibrium profits:
π T R i = 2 ρ c b γ c n 2 ρ γ c n 2 ρ c b γ 2 c n + 2 ρ c 2 b 2 γ 2 γ c n + ρ c r 2 + a γ c n 2 2 a γ c n 2 ρ c b γ b 2 c 2 γ b 2 c 2 a γ + b 2 c 2 γ 2 + γ + ρ γ a 2 ρ γ 2 a + 2 ρ γ 2 c n γ 2 c n 2 + 2 ρ γ a 2 ρ γ a c n + a γ + ρ γ c n 2 + ρ c γ 2 a + 2 ρ c b γ 2 + 2 ρ c b γ a c n + ρ γ + 2 ρ c 2 b 2 γ a + γ c n 2 2 ρ c 2 b 2 γ 2 ρ γ 2 2 ρ c b γ a + 2 γ 2 c n γ 2 2 ρ γ c n c r 4 γ a γ + 1 K δ 1 2 1 / 2 .
(ii) For γ c n 1 + a < c r < 1 + a c n c n a + b γ c n c b c b a b ( 1 + a ) ,
Equilibrium decisions: q 1 R i i = 1 + a c n c n a + c n γ b c r b b a c r c b c b a 2 ( 1 + a γ 2 b 2 + γ b 2 + γ b 2 a ) , q n R i i = 1 + a + γ b 2 a + c n γ b γ b + γ b 2 + γ b 2 c r + γ b 2 c c n γ c n b 2 γ 2 b 2 2 ( 1 + a γ 2 b 2 + γ b 2 + γ b 2 a ) , q r R i i = b q 1 R i i , K R i i = ρ 1 + a + 2 γ 2 b 2 c n + γ 4 b 4 2 γ 3 b 4 + γ 2 b 4 + 2 c b 3 γ 2 γ 3 b 4 a + γ 2 b 4 a 2 c n γ 2 b 3 c n 2 γ 2 b 2 c r 2 b 4 γ 2 c 2 b 4 γ 2 + 2 c n 2 γ 2 b 3 c n 2 γ 2 b 4 + 2 c r b 3 γ 2 γ 2 b 2 a + 2 γ b 2 a 2 c n γ b c n 2 3 γ 2 b 2 + 2 γ b 2 + 2 c n 2 γ b + 2 c n γ b 2 c r + 2 c n γ b 2 c 2 c n 2 γ b 2 2 c r b 4 c r 2 + 2 c n γ 2 b 4 c r + 2 c n γ 2 b 4 c 2 c n c r b 3 γ 2 2 c n c b 3 γ 2 2 a + 2 1 γ 2 b 2 + γ b 2 1 + a γ 2 b 2 + γ b 2 + γ b 2 a .
Equilibrium profits:
π T R i i = π 1 R i i + π 2 R i i = p 1 c n q 1 + p n c n q n + p r c r q r c b q 1 K 1 + a 2 1 / 2 .
(2)
Replacing the statement of Proposition 3.
Proposition 3.
The profits under the remanufacturing scenario are higher than that of no remanufacturing (i.e., π T R > π T N ) if, and only if, the cost of c r is not pronounced (i.e., c r < c r Δ ); otherwise, the opposite is true.
(3)
Replacing the statement of Proposition 5.
Proposition 5.
Under the partial remanufacturing scenario, the total environmental impact increases with the remanufacturing cost, that is, E R / c r > 0 ; however, under the full remanufacturing scenario, the opposite is true, that is, E R / c r < 0 .
(4)
Replacing the statement of Proposition 6.
Proposition 6.
The threshold values of  c r Δ increase with the collection target of  b , i.e.,  c r Δ / b > 0 ; moreover, the equilibrium quantities  q 1 / b < 0 .
(5)
Replacing the “Analysis of the Scenario with Remanufacturing” in Appendix A.
Applying backward, starting from Period 2 again. In Stage 1 of Period 2, the manufacturer sets ( q n , q r ) to maximize the profit in Period 2. That is,
Π 2 R = p n c n q n + p r c r q r c b q 1
subject to q r b q 1 , and q n , q r > 0 .
To maximize the problems with constraints, like [52] and [41], we write the above problem as following the Lagrangean:
L = p n c n q n + p r c r q r c b q 1 + λ ( b q 1 q r )
Using the KKT optimality conditions:
L q n = 1 + a 2 q n 2 q n a 2 γ q r c n L q r = γ 2 γ q n 2 γ q r c r + λ λ ( b q 1 q r ) = 0
The above equations have two solutions. They depend on whether λ are greater than or equal to zero.
(i) λ = 0 . Solving the gradient conditions with λ = 0 , we have
q n = 1 + a c n γ + c r 2 ( 1 + a γ ) , q r = γ c n a c r c r 2 γ ( 1 + a γ )
(ii) λ > 0 . Solving the system, we obtain
q n = 1 + a 2 γ b q 1 c n 2 1 + a , q r = b q 1 , λ = 2 γ b q 1 2 r 2 b q 1 + 2 γ b q 1 a γ c n + c r + a c r ( 1 + a )
(6)
Replacing the “Appendix B. Proof of Proposition 1”.
(i) For γ ( b γ + b 2 c + b 2 c a b b a b 2 γ c b γ c n + c n + b c n a + c n ) 1 + a = c r ¯ < c r < c ¯ r = γ c n 1 + a ,
Solving K R i K N = ρ ( a c r 2 2 c r c n a + c n 2 γ a 2 c r c n c n 2 γ 2 + 2 c n 2 γ + c r 2 ) 2 ( a 2 + 3 a + 2 ) ( γ 1 ) ( 1 + a γ ) , we find that whether K R i K N > 0 depends on the numerator of the above equation. Then, let t = a c r 2 2 c r c n a + c n 2 γ a 2 c r c n c n 2 γ 2 + 2 c n 2 γ + c r 2 , we can obtain:
c r 1 = c n + a c n + c n a + 1 γ 1 a γ + 1 a + 1 ,   c r 2 = c n + a c n c n a + 1 γ 1 a γ + 1 a + 1 . Comparing c r 1 , c r 2   c r ¯ and c ¯ r , we find that c r ¯ < c ¯ r < c r 1 < c r 2 , which means K N > K R i .
(ii) For γ ( b γ + b 2 c + b 2 c a b b a b 2 γ c b γ c n + c n + b c n a + c n ) 1 + a = c r ¯ < c r < c ¯ r = γ c n 1 + a , solving  K R i i K N = ρ 2 c n 2 γ 2 b 3 + 2 γ c n b 2 c r + 2 γ c n b 2 c + 3 c n 2 γ b + 2 γ c n b 2 2 γ b 2 c a 2 γ b c n a + c n 2 γ 2 b 3 a + 2 c n 2 γ b a 2 c n 2 γ b 2 a 2 c n γ b 3 c 2 c r b 2 γ a + 2 c n γ b 2 a + c r 2 b 3 γ a + c 2 b 3 γ a + 2 c r b 3 c γ 2 c n γ b 3 c r + 2 γ c n b 2 c r a + 2 γ c n b 2 c a 2 c r b 2 γ c n 2 γ 3 b 3 + c r 2 b 3 γ + c 2 b 3 γ 2 c n b c r a 2 c n 2 γ b 2 2 c n b c a 2 c n γ b 3 c a + 2 c r b 3 c γ a 2 c n γ b 3 c r a + 2 c n + 2 c n a 2 c n 2 a 2 c n b c 2 b γ c n 2 γ b 2 c 2 c n b c r + b γ 2 c n 2 + γ b a 2 a + 2 1 γ 2 b 2 + γ b 2 1 + a γ 2 b 2 + γ b 2 + γ b 2 a we find that whether K R i i K N > 0 depends on the numerator of the above equation. Then, similar to scenario (i), we can yield the roots of:
c r 1 = 2 b γ 2 b γ c n 2 γ b 2 c 2 γ b 2 c a + 2 γ c n b 2 2 γ b c n a + 2 c n γ b 2 a + 2 c n a + 2 c n + 2 γ b a + 2 ( c n 2 ( 1 γ 2 b 2 + γ b 2 ) ( 1 + a ) ( 1 + a γ 2 b 2 + γ b 2 + γ b 2 a ) ) 1 / 2 2 ( b γ + γ b a ) b
c r 2 = 2 b γ 2 b γ c n 2 γ b 2 c 2 γ b 2 c a + 2 γ c n b 2 2 γ b c n a + 2 c n γ b 2 a + 2 c n a + 2 c n + 2 γ b a 2 ( c n 2 ( 1 γ 2 b 2 + γ b 2 ) ( 1 + a ) ( 1 + a γ 2 b 2 + γ b 2 + γ b 2 a ) ) 1 / 2 2 ( b γ + γ b a ) b
Comparing c r 1 , c r 2   c r ¯ and c ¯ r , we find that c r ¯ < c ¯ r < c r 1 < c r 2 , which means K N > K R i i .
In sum, we can conclude that remanufacturing is always detrimental to the incentives for new product innovation (i.e., K R < K N ).
(7)
Replacing the “Appendix C. Proof of Proposition 2”.
Based on Table 1, K R i c r = ρ ( c n c r ) a + 2 1 γ a γ + 1 > 0 and K R i i c r = ρ γ b b γ + c n c r b 2 γ b γ c n γ b 2 c + γ c n b 2 2 a + 2 1 γ 2 b 2 + γ b 2 1 + a γ 2 b 2 + γ b 2 + γ b 2 a > 0 .
In sum, we can conclude that under the remanufacturing scenario, the incentives for new product innovation increase with the remanufacturing cost, that is, K R / c r > 0 .
(8)
Replacing the “Appendix D. Proof of Proposition 3”.
Based on the outcomes in Table 1, we can find that π T R i π T N = ( c r r c n + a c r ) 2 4 r ( 1 + a r ) ( 1 + a ) > 0 ,
This means that π T R i π T N > 0 is always true.
(ii) For γ ( b γ + b 2 c + b 2 c a b b a b 2 γ c b γ c n + c n + b c n a + c n ) 1 + a = c r ¯ < c r < c ¯ r = γ c n 1 + a ,
After the observation of
π T R i i π T N = γ b a 2 2 c n c r 4 c n c r a + 2 γ c n b c r a 2 c n b 2 c γ 2 a c 2 b 3 γ 2 γ 2 b + 2 γ c n b 2 c + c n 2 γ b + 2 c n 2 γ 4 γ b 2 c a 4 γ b c n a + 2 γ 2 b c + 2 c b γ c n a + 2 c n 2 γ b a + 2 c 2 b 3 γ a + 4 γ c n b 2 c a 2 γ c n a + 2 a 2 c r + c 2 b 3 γ 2 c n b 2 c γ 2 2 c r b c a 2 2 c n γ b a 2 2 c n c r a 2 + 2 γ 2 b c n a + 2 γ c n b c r 4 c r b c a c r 2 b + 2 c r 2 b γ c n 2 γ b 2 c 2 γ c n + 4 a c r + 2 c b γ c n + b γ + 2 γ b a 2 c r b c 2 c r 2 b a n + 2 c n 2 γ a γ 2 b a + 2 c b 2 γ 2 2 c n 2 γ 2 b c r 2 b a 2 + 2 c n γ b 2 c a 2 + c n 2 γ b a 2 + c 2 b 3 γ a 2 2 b 2 c γ a 2 + 2 c b 2 γ 2 a c n 2 γ 2 b a c 2 b 3 γ 2 a 4 ( γ 2 b 2 1 a γ b 2 γ b 2 a ) ( 1 + a ) we find that whether π T R i i π T N > 0 depends on the numerator of the above equation. Then, solving the above equation, we can yield the roots as follows:
c r 1 = 2 a 2 c n a 2 c b a 2 c b 2 c n + 2 + 2 b γ c n + 2 ( 1 c n c b ) ( 1 + a ) ( 1 + a r 2 b 2 + r b 2 + r b 2 a ) 2 b ( 1 + a )   c r 2 = 2 a 2 c n a 2 c b a 2 c b 2 c n + 2 + 2 b γ c n 2 ( 1 c n c b ) ( 1 + a ) ( 1 + a r 2 b 2 + r b 2 + r b 2 a ) 2 b ( 1 + a ) comparing c r 1 , c r 2   c r ¯ and c ¯ r , we find that, for any c > 0 , then c r ¯ < c r 2 < c ¯ r < c r 1 . That is, if, and only if, the cost of c r < c r 2 , then π T R i i > π T N , otherwise, π T R i i < π T N .
In sum, we can conclude that the profits under the remanufacturing scenario are higher than that of no remanufacturing (i.e., π T R > π T N ) if, and only if, the cost of c r is not pronounced (i.e., c r < c r Δ = c r 2 ); otherwise, the opposite is true.
(9)
Replacing the “Appendix E. Proof of Proposition 4”.
Since E R = i d q 1 R + q n R , then we can obtain
(i) For γ ( b γ + b 2 c + b 2 c a b b a b 2 γ c b γ c n + c n + b c n a + c n ) 1 + a = c r ¯ < c r < c ¯ r = γ c n 1 + a ,
E R i E N = i d a c r + c r γ c n 2 a + 1 ( 1 + a γ ) < 0 is always true.
(ii) For γ ( b γ + b 2 c + b 2 c a b b a b 2 γ c b γ c n + c n + b c n a + c n ) 1 + a = c r ¯ < c r < c ¯ r = γ c n 1 + a ,
solving E R i i E N = i d b 2 c n γ a + γ b c r a + γ b c a + γ 2 b + c n γ b a 2 c b 2 γ 2 a + c b 2 r a 2 c n γ 2 b a + γ b c + γ b c r a 2 c r γ b a 2 γ a + γ 2 b a c b 2 γ 2 2 a c r 2 c n γ 2 b 2 b γ a γ + c n γ b + 2 c n γ + 2 γ b 2 c a + 2 c n γ b a c r b γ + γ b 2 c 2 ( a + 1 γ 2 b 2 + γ b 2 + γ b 2 a ) ( a + 1 ) , we find that whether E R i i E N < 0 depends on the numerator of the above equation. Then, solving the above equation, we can yield the root of: c r 1 = r b c a 1 + c n b a 2 r b 2 c a + c b 2 a 2 c n γ b a + 2 c b 2 a + 2 c n b a + c n b + c b 2 + b γ a + 2 c n a b a 2 γ b 2 c 2 c n γ b 2 b a + 2 c n b + b γ a + b c 1 b γ a b γ + a 2 + 2 a . When c r > c r 1   E R i i E N < 0 is true.
Comparing c r 1 , c r ¯ and c ¯ r , we find that c r 1 < c r ¯ < c ¯ r .
Then, we can conclude that, for any c r ¯ < c r < c ¯ r , E R i i E N < 0 is always true.
In sum, we can conclude that the presence of remanufacturing is always beneficial to the environment, that is, E N > E R .
(10)
Replacing the “Appendix F. Proof of Proposition 5”.
(i) For γ ( b γ + b 2 c + b 2 c a b b a b 2 γ c b γ c n + c n + b c n a + c n ) 1 + a = c r ¯ < c r < c ¯ r = γ c n 1 + a
E R i / c r = 1 2 ( a γ + 1 ) > 0 is always true.
(ii) For γ ( b γ + b 2 c + b 2 c a b b a b 2 γ c b γ c n + c n + b c n a + c n ) 1 + a = c r ¯ < c r < c ¯ r = γ c n 1 + a ,
E R i i / c r = b ( 1 + a b γ ) 2 ( a + 1 γ 2 b 2 + γ b 2 + γ b 2 a ) < 0 is always true.
Under the partial remanufacturing scenario, the total environmental impact increases with the remanufacturing cost, that is, E R / c r > 0 ; however, under the full remanufacturing scenario, the opposite is true, that is, E R / c r < 0 .
(11)
Replacing the “Appendix G. Proof of Proposition 6”.
Based on the analysis of Proposition 3, we find that, for γ ( b γ + b 2 c + b 2 c a b b a b 2 γ c b γ c n + c n + b c n a + c n ) 1 + a = c r ¯ < c r < c ¯ r = γ c n 1 + a , there is a threshold of c r Δ = c r 2 = 2 a 2 c n a 2 c b a 2 c b 2 c n + 2 + 2 b γ c n 2 ( 1 c n c b ) ( 1 + a ) ( 1 + a r 2 b 2 + r b 2 + r b 2 a ) 2 b ( 1 + a )  then for c r Δ b = a c n a + γ b 3 c a + 1 + γ b 3 c c n γ 2 b 3 c + ( c n 1 ) ( 1 + a ) ( 1 + a γ 2 b 2 + γ b 2 + γ b 2 a ) b 2 ( 1 + a ) ( 1 + a γ 2 b 2 + γ b 2 + γ b 2 a ) we find that for any c > 0 , c r Δ b > 0 is always true.
We are now in a position to prove q 1 / b < 0 as follows.
(i) For γ ( b γ + b 2 c + b 2 c a b b a b 2 γ c b γ c n + c n + b c n a + c n ) 1 + a = c r ¯ < c r < c ¯ r = γ c n 1 + a
q 1 R i / b = c 2 < 0
(ii) For γ ( b γ + b 2 c + b 2 c a b b a b 2 γ c b γ c n + c n + b c n a + c n ) 1 + a = c r ¯ < c r < c ¯ r = γ c n 1 + a ,
q 1 R i i / b = q 1 R i i = 2 γ 2 b a c n γ 2 b 2 a a 2 c r 2 γ b a 2 + γ c b 2 c γ 2 b 2 + c r γ b 2 + 2 b γ c n c r γ 2 b 2 + c n γ a c n γ 2 b 2 + c n γ 3 b 2 + 4 b γ c n a + c a 2 γ b 2 a c r γ 2 b 2 + 2 c r γ b 2 a + 2 c γ b 2 a c a 2 c + a 2 c r γ b 2 c a γ 2 b 2 2 γ 2 b c n a c r + c n γ + 2 γ b c n a 2 + 2 γ 2 b 2 γ b 2 b γ 2 c n 2 a c r 2 c a 4 γ b a 2 ( 1 + a γ 2 b 2 + γ b 2 + γ b 2 a ) 2
Then, solving the above equation, we can yield the root of:  c r 1 = 4 b γ c n a c c n γ 2 b 2 a + c a 2 γ b 2 + 2 γ c b 2 a c a γ 2 b 2 2 γ 2 b c n a + 2 γ b c n a 2 4 γ b a + c n γ 3 b 2 c γ 2 b 2 c n γ 2 b 2 + c γ b 2 + 2 b γ c n + 2 γ 2 b a 2 γ 2 b c n 2 γ b a 2 + c n γ a 2 b γ + 2 γ 2 b + c n γ c a 2 2 c a 1 a 2 γ b 2 2 γ b 2 a + a γ 2 b 2 + γ 2 b 2 γ b 2 + a 2 + 2 a . When c r > c r 1   q 1 R i i / b < 0 is true.
Comparing c r 1 , c r ¯ and c ¯ r , we find that c r 1 < c r ¯ < c ¯ r .
Then, we can conclude that, for any c r ¯ < c r < c ¯ r , q 1 R i i / b < 0 is always true.
In sum, we can conclude the equilibrium quantities as q 1 / b < 0 .
The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

  1. Yang, D.; Yang, Q.; Zhang, L. Operational Decisions on Remanufacturing under the Product Innovation Race. Sustainability 2023, 15, 4920. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Yang, D.; Yang, Q.; Zhang, L. Correction: Yang et al. Operational Decisions on Remanufacturing under the Product Innovation Race. Sustainability 2023, 15, 4920. Sustainability 2023, 15, 12116. https://doi.org/10.3390/su151612116

AMA Style

Yang D, Yang Q, Zhang L. Correction: Yang et al. Operational Decisions on Remanufacturing under the Product Innovation Race. Sustainability 2023, 15, 4920. Sustainability. 2023; 15(16):12116. https://doi.org/10.3390/su151612116

Chicago/Turabian Style

Yang, Dexiang, Qin Yang, and Lei Zhang. 2023. "Correction: Yang et al. Operational Decisions on Remanufacturing under the Product Innovation Race. Sustainability 2023, 15, 4920" Sustainability 15, no. 16: 12116. https://doi.org/10.3390/su151612116

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop