Study on Coupled Relationship between Urban Air Quality and Land Use in Lanzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Air Quality Data
2.2.2. Urban Land Use Data
2.2.3. Other Data
2.3. Research Methods
2.3.1. Correlation Analysis
2.3.2. Inverse Distance Weight (IDW)
2.3.3. Getis-Ord Gi*
2.3.4. Negative Binomial Regression Model
3. Results
3.1. Spatiotemporal Characteristics of Urban Air Quality
3.1.1. Temporal Distribution Characteristics
3.1.2. Spatial Clustering Features
3.2. Relationship between Urban Air Quality and Land Use
4. Discussion
5. Conclusions
5.1. Conclusions
5.2. Policy Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Urbanization Prospects: The 2018 RevisionUnited Nations; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2018.
- Tecer, L.H.; Tagil, S. Impact of Urbanization on Local Air Quality: Differences in Urban and Rural Areas of Balikesir, Turkey. Clean Soil Air Water 2014, 42, 1489–1499. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Bravo, M.A.; Jin, L.; Nori-Sarma, A.; Xu, Y.; Guan, D.; Wang, C.; Chen, M.; Wang, X.; et al. Air Quality in Lanzhou, a Major Industrial City in China: Characteristics of Air Pollution and Review of Existing Evidence from Air Pollution and Health Studies. Water Air Soil Pollut. 2014, 225, 2187. [Google Scholar] [CrossRef]
- World Health Organization. Air Pollution. 2020. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_2.2020-3-28 (accessed on 12 March 2021).
- Yin, P.; Brauer, M.; Cohen, A.J.; Wang, H.; Li, J.; Burnett, R.T.; Stanaway, J.D.; Causey, K.; Larson, S.; Godwin, W.; et al. The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: An analysis for the Global Burden of Disease Study 2017. Lancet Planet. Health 2020, 4, 386–398. [Google Scholar] [CrossRef]
- Abd Rani, N.L.; Azid, A.; Khalit, S.I.; Juahir, H.; Samsudin, M.S. Air Pollution Index Trend Analysis in Malaysia, 2010–15. Pol. J. Environ. Stud. 2018, 27, 801–807. [Google Scholar] [CrossRef]
- Kanchan, K.; Gorai, A.K.; Goyal, P. A review on air quality indexing system. Asian J. Atmos. Environ. 2015, 9, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Jiang, Y.; Liu, Q.; Xu, D.; Zhao, S.; He, L.; Liu, H.; Xu, H. Temporal and spatial trends in air quality in Beijing. Landsc. Urban Plan. 2019, 185, 35–43. [Google Scholar] [CrossRef]
- Hu, J.; Ying, Q.; Wang, Y.; Zhang, H. Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices. Environ. Int. 2015, 84, 17–25. [Google Scholar] [CrossRef] [PubMed]
- HJ 633-2012, Ambient Air Quality Index (AQI) Technical Regulations (Trial); China Environmental Science Press: Beijing, China, 2012.
- Wang, Z.B.; Liang, L.W.; Wang, X.J. Spatio-temporal evolution patterns and influencing factors of PM2.5 in Chinese urban agglomerations. Acta Geogr. Sin. 2019, 74, 2614–2630. [Google Scholar]
- Zhang, X.M.; Luo, S.; Li, X.M.; Li, Z.F.; Fan, Y.; Sun, J.W. Spatio-temporal Variation Features of Air Quality in China. Sci. Geogr. Sin. 2020, 40, 190–199. [Google Scholar]
- Nurul, A.M.; Ling, O.H.L.; Omar, D. Urban Air Quality and Human Health Effects in Selangor, Malaysia. Procedia Soc. Behav. Sci. 2015, 170, 282–291. [Google Scholar]
- Liu, Q.; Yang, Y.C.; Liu, H.Y. Spatiotemporal evolution characteristics of air pollution degree in 366 cities of China. Arid Land Geogr. 2020, 43, 820–830. [Google Scholar]
- Lin, X.Q.; Wang, D. Spatio-temporal variations and socio-economic driving forces of air quality in Chinese cities. Acta Geogr. Sin. 2016, 71, 1357–1371. [Google Scholar]
- Germani, A.R.; Morone, P.; Testa, G. Environmental justice and air pollution: A case study on Italian provinces. Ecol. Econ. 2014, 106, 69–82. [Google Scholar] [CrossRef]
- Kramer, A.L.; Campbell, L.; Donatuto, J.; Heidt, M.; Kile, M.; Simonich, S.L.M. Impact of local and regional sources of PAHs on tribal reservation air quality in the U.S. Pacific Northwest. Sci. Total Environ. 2020, 710, 136412. [Google Scholar] [CrossRef]
- Oleniacz, R.; Gorzelnik, T. Assessment of the Variability of Air Pollutant Concentrations at Industrial, Traffic and Urban Background Stations in Krakow (Poland) Using Statistical Methods. Sustainability 2021, 13, 5623. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, Y.; Xu, W.; Wu, J.; Tian, L.; Liu, J. Spatiotemporal Pattern Changes of Air Quality in China from 2005 to 2015. Ecol. Environ. Sci. 2017, 26, 243–252. [Google Scholar]
- Steiner, A.L.; Tonse, S.; Cohen, R.C.; Goldstein, A.H.; Harley, R.A. Influence of future climate and emissions on regional air quality in california. J. Geophys. Res. Atmos. 2006, 111, 18303. [Google Scholar] [CrossRef]
- Javanbakht, M.; Boloorani, A.D.; Kiavarz, M.; Samani, N.N.; Zangiabadi, M. Spatial-temporal analysis of urban environmental quality of tehran, iran. Ecol. Indic. 2020, 120, 106901. [Google Scholar] [CrossRef]
- Mccarty, J.; Kaza, N. Urban form and air quality in the united states. Landsc. Urban Plan. 2015, 139, 168–179. [Google Scholar] [CrossRef]
- Yu, J.; Shang, E.P. The Spacing Correspondence of PM2.5 to Factors of Urban Planning: A Case of Shen Yang. Urban Dev. Stud. 2013, 20, 9. [Google Scholar]
- Wang, F.; Wu, K.Y.; Wang, H.H.; Zhang, S.Y. Correlations between PM2.5 with Land Use Types in Hefei and Constructive Solutions. Environ. Sci. Manag. 2014, 39, 73–79. [Google Scholar]
- Xiao, J.N.; Du, G.M.; Shi, Y.Q.; Wen, Y.Y.; Yao, J.; Gao, Y.T.; Lin, J.Y. Spatiotemporal distribution pattern of ambient air pollution and its correlation with meteorological factors in Xiamen City. Acta Sci. Circum. 2016, 36, 3363–3371. [Google Scholar]
- Li, X.F.; Zhang, M.J.; Wang, S.J.; Zhao, A.F.; Ma, Q. Variation Characteristics and Influencing Factors of Air Pollution Index in China. Environ. Sci. 2012, 33, 1936–1943. [Google Scholar]
- Habermann, M.; Billger, M.; Haeger-Eugensson, M. Land use Regression as Method to Model Air Pollution. Previous Results for Gothenburg/Sweden. Procedia Eng. 2015, 115, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Aslan, A.; Altinoz, B.; Ozsolak, B. The link between urbanization and air pollution in turkey: Evidence from dynamic autoregressive distributed lag simulations. Environ. Sci. Pollut. Res. 2021, 1–11. [Google Scholar] [CrossRef]
- Xu, S.; Zou, B.; Pu, Q.; Guo, Y. Impact Analysis of Land Use/Cover on Air Pollution. J. Geoinf. Sci. 2015, 17, 290–299. [Google Scholar]
- Yuan, L.L. Study on the Sustainable Use of Urban Land in the Process of Urbanization. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2005. [Google Scholar]
- Yang, Y.C.; Yang, X.J. Research on Urban Spatial Expansion and Land Use Inner Structure Transformation of the Large Valley-basin Cities in China from 1949 to 2005—A Case Study of Lanzhou. J. Nat. Resour. 2009, 24, 37–49. [Google Scholar]
- Bandeira, J.M.; Coelho, M.C.; Sá, M.E.; Tavares, R.; Borrego, C. Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city. Sci. Total Environ. 2011, 409, 1154–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, L.D.; Sallis, J.F.; Conway, T.L.; Chapman, J.E.; Saelens, B.E.; Bachman, W. Many pathways from land use to health—Associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. Plan. Assoc. 2006, 72, 75–87. [Google Scholar] [CrossRef]
- Ku, C.A. Exploring the Spatial and Temporal Relationship between Air Quality and Urban Land-Use Patterns Based on an Integrated Method. Sustainability 2020, 12, 2964. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.S.; Sang, H.L.; Leem, Y. Temporal Changes in Air Quality According to Land-Use Using Real Time Big Data from Smart Sensors in Korea. Sensors 2020, 20, 6374. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Jiao, L.; Zhao, S.; Yuan, M.; Li, X.; Han, Y.; Zhang, B.; Dong, T. Examining the Impacts of Land Use on Air Quality from a Spatio-Temporal Perspective in Wuhan, China. Atmosphere 2016, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. Air Quality and Urban Form in U.S. Urban Areas: Evidence from Regulatory Monitors. Environ. Sci. Technol. 2011, 45, 7028–7035. [Google Scholar] [CrossRef]
- Wu, C.; Chen, Y.; Pan, W.; Zeng, Y.; Chen, M.; Guo, Y.L.; Lung, S.C. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environ. Pollut. 2017, 224, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, T.; Li, Z.; Tao, Y.; Wang, F.; Zhang, X.; Xu, C.; Ma, S.; Huang, J. Particulate and gaseous pollutants in a petrochemical industrialized valley city, Western China during 2013–2016. Environ. Sci. Pollut. Res. 2018, 25, 1–17. [Google Scholar] [CrossRef]
- Dons, E.; Van Poppel, M.; Kochan, B.; Wets, G.; Panis, L.I. Modeling temporal and spatial variability of traffic-related air pollution: Hourly land use regression models for black carbon. Atmos. Environ. 2013, 74, 237–246. [Google Scholar] [CrossRef]
- Dadhich, A.P.; Goyal, R.; Dadhich, P.N. An assessment of urban space expansion and its impact on air quality using geospatial approach. J. Urban Environ. Eng. 2017, 11, 79–87. [Google Scholar] [CrossRef]
- Halim, N.D.A.; Latif, M.T.; Mohamed, A.F.; Maulud, K.N.A.; Idrus, S.; Azhari, A.; Othman, M.; Sofwan, N.M. Spatial assessment of land use impact on air quality in mega urban regions, Malaysia. Sustain. Cities Soc. 2020, 63, 102436. [Google Scholar] [CrossRef]
- Liu, H.L.; Shen, Y.S. The Impact of Green Space Changes on Air Pollution and Microclimates: A Case Study of the Taipei Metropolitan Area. Sustainability 2014, 6, 8827–8855. [Google Scholar] [CrossRef] [Green Version]
- Michanowicz, D.R.; Shmool, J.L.; Tunno, B.J.; Tripathy, S.; Gillooly, S.; Kinnee, E.; Clougherty, J.E. A hybrid land use regression/aermod model for predicting intra-urban variation in pm2.5. Atmos. Environ. 2016, 131, 307–315. [Google Scholar] [CrossRef]
- Ajtai, N.; Stefanie, H.; Botezan, C.; Ozunu, A.; Radovici, A.; Dumitrache, R.; Iriza-Burcă, A.; Diamandi, A.; Hirtl, M. Support tools for land use policies based on high resolution regional air quality modelling. Land Use Policy 2020, 95, 103909. [Google Scholar] [CrossRef]
- Ma, M.J.; Tan, Z.Y.; Chen, Y.; Ding, F. Characteristics of air quality and impact of sand and dust weather in the recent 15 years in Lanzhou City. J. Lanzhou Univ. (Nat. Sci.) 2019, 55, 33–41. [Google Scholar]
- Ma, S.; Li, Z.Q.; Chen, H.; Liu, H.; Yang, F.; Zhou, Q.; Xia, D.S. Analysis of air quality characteristics and sources of pollution during heating period in Lanzhou. Environ. Chem. 2019, 38, 344–353. [Google Scholar]
- De Fatima Andrade, M.; Kumar, P.; de Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.; de Miranda, R.M.; Albuquerque, T.; et al. Air quality in the megacity of so paulo: Evolution over the last 30 years and future perspectives. Atmos. Environ. 2017, 159, 66–68. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.J.; Liu, M.; Yin, Q.; Gong, J.L.; Huang, Z.Y. Changes of air pollution in Lanzhou in recent ten years and suggestions on its control. Sci. Technol. Inf. Gansu 2016, 45, 8–13. [Google Scholar]
- Guan, Q.; Li, F.; Yang, L.; Zhao, R.; Yang, Y.; Luo, H. Spatial-temporal variations and mineral dust fractions in particulate matter mass concentrations in an urban area of northwestern China. J. Environ. Manag. 2018, 222, 95–103. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Shi, Y.; Wang, J.; Zhu, B. Temporal Variations of O3 and NOx in the Urban Background Atmosphere of Nanjing, East China. Arch. Environ. Contam. Toxicol. 2016, 71, 224–234. [Google Scholar] [CrossRef]
- Zang, Z.; Wang, W.; You, W.; Li, Y.; Ye, F.; Wang, C. Estimating ground-level PM2.5 concentrations in Beijing, China using aerosol optical depth and parameters of the temperature inversion layer. Sci. Total Environ. 2017, 575, 1219–1227. [Google Scholar] [CrossRef]
- West, J.J.; Cohen, A.; Dentener, F.; Brunekreef, B.; Zhu, T.; Armstrong, B.; Bell, M.L.; Brauer, M.; Carmichael, G.; Costa, D.L. What we breathe impacts our health: Improving understanding of the link between air pollution and health. Environ. Sci. Technol. 2016, 50, 4895–4904. [Google Scholar] [CrossRef]
- Chen, T.T.; Li, Z.Q.; Zhou, Q.; Wang, F.L.; Zhang, X.; Wang, F.T. Air pollution characteristics, source analysis and cause of formation under the background of “Lanzhou blue”. Acta Sci. Circum. 2020, 40, 1361–1373. [Google Scholar]
- Dc, A.; Kyh, B.; Han, J.B.; Jhc, A. Assessing the distributional characteristics of pm 10, pm 2.5, and pm 1 exposure profile produced and propagated from a construction activity. J. Clean. Prod. 2020, 276, 124335. [Google Scholar]
- Leng, H.; Kong, F.Q.; Yuan, Q. Research on Land Use Characteristics of Cold City based on Air Quality Analysis: Research Framework and Empirical Analysis. Archit. J. 2020, S1, 6–11. [Google Scholar]
- Li, X.; Peng, L.; Chi, T.H.; Li, H.C.; Xu, Y.Z. Spatial-temporal Features of Air Quality in Beijing City. Bull. Surv. Map. 2016, 9, 47–51. [Google Scholar]
- Burrough, P.A.; McDonnell, R.A. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 1998; pp. 321–345. [Google Scholar]
- Salcedo, D.; Castro, T.; Ruiz-Suárez, L.G.; García-Reynoso, A.; Torres-Jardón, R.; Torres-Jaramillo, A.; Mar-Morales, B.E.; Salcido, A.; Celada, A.T.; Carreón-Sierra, S.; et al. Study of the regional air quality south of Mexico City (Morelos State). Sci. Total Environ. 2012, 414, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 2010, 24, 189–206. [Google Scholar] [CrossRef]
- Kang, J.E.; Yoon, D.K.; Bae, H.J. Evaluating the effect of compact urban form on air quality in Korea. Environ. Plan. B 2019, 46, 179–200. [Google Scholar] [CrossRef]
- Lambert, D. Zero-inflated Poisson Regression with an Application to Defects in Manufacturing. Technometrics 1992, 34, 1–14. [Google Scholar] [CrossRef]
- Wong, S.C.; Sze, N.N.; Li, Y.C. Contributory factors to traffic crashes at signalized intersections in Hong Kong. Accid. Anal. Prev. 2007, 39, 1107–1113. [Google Scholar] [CrossRef]
- Gwynn, R.C.; Burnett, R.T.; Thurston, G.D. A time-series analysis of acidic particulate matter and daily mortality and morbidity in the buffalo, New York, region. Environ. Health Perspect. 2000, 108, 125–133. [Google Scholar] [CrossRef]
- Cameron, A.C.; Trivedi, P.K. Regression Analysis of Count Data; Cambridge University Press: Cambridge, UK, 1998; pp. 70–77. [Google Scholar]
- Chu, P.C.; Chen, Y.; Lu, S. Atmospheric effects on winter SO2 pollution in Lanzhou, China. Atmos. Res. 2008, 89, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Tecer, L.H. A factor analysis study: Air pollution, meteorology, and hospital admissions for respiratory diseases. Toxicol. Environ. Chem. 2009, 91, 1399–1411. [Google Scholar] [CrossRef]
- Gladtke, D. Air pollution in the Rhine–Ruhr-area. Toxicol. Lett. 1998, 96–97, 277–283. [Google Scholar] [CrossRef]
- Cao, L.Y. A Study on Local Control Model of Urban Air Pollution—A Case Study of Lanzhou. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2015. [Google Scholar]
- Filonchyk, M.; Yan, H.; Li, X. Temporal and spatial variation of particulate matter and its correlation with other criteria of air pollutants in Lanzhou, China, in spring-summer periods. Atmos. Pollut. Res. 2018, 9, 1100–1110. [Google Scholar] [CrossRef]
- Shi, T.; Hu, Y.; Liu, M.; Li, C.; Zhang, C.; Liu, C. Land use regression modelling of PM2.5 spatial variations in different seasons in urban areas. Sci. Total Environ. 2020, 743, 140744. [Google Scholar] [PubMed]
- Li, C.; Zhang, K.; Dai, Z.; Ma, Z.; Liu, X. Investigation of the Impact of Land-Use Distribution on PM2.5 in Weifang: Seasonal Variations. Int. J. Environ. Res. Public Health 2020, 17, 5135. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.C.; Zhou, B.F.; Li, S.S.; Zhao, W.H.; Wang, L.L.; Dong, J.; Zhao, W.J. Temporal and Spatial Variation Characteristics and Origin Analysis of Air Pollutants in Tianjin from 2015 to 2019. Ecol. Environ. Sci. 2020, 29, 1862–1873. [Google Scholar]
Factors | Variables (1000 m Buffer Zone) | Min | Max | Mean | Std. Dev. | VIF | |
---|---|---|---|---|---|---|---|
X1 | Heating emissions | Number of heating stations (pieces) | 0 | 48 | 8.31 | 9 | 1.78 |
X2 | Industrial emissions | Industrial enterprises above designated size (pieces) | 0 | 14 | 2.28 | 2.34 | 1.33 |
X3 | Traffic emissions | Road network density (km/km2) | 0.62 | 8.22 | 4.1 | 1.73 | 2.16 |
X4 | Industrial land | Proportion of industrial land | 0 | 0.73 | 0.07 | 0.11 | 1.87 |
X5 | Land for construction sites | Proportion of land used for construction sites | 0 | 0.58 | 0.04 | 0.08 | 1.19 |
X6 | Land for public management and public service facilities | Proportion of land for public management and public service facilities | 0 | 0.36 | 0.08 | 0.07 | 1.23 |
X7 | Green land | Proportion of green land | 0 | 0.35 | 0.03 | 0.05 | 1.32 |
X8 | Residential land | Proportion of residential land | 0.02 | 0.86 | 0.51 | 0.18 | 1.85 |
X9 | Land for commercial service facilities | Proportion of land for commercial service facilities | 0 | 0.3 | 0.07 | 0.06 | 1.36 |
X10 | Land for external transportation | Proportion of land for external transportation | 0 | 0.31 | 0.01 | 0.03 | 1.29 |
Variable | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
330 m buffer zone | Y1 | −0.116 * | 0.187 ** | 0.111 * | 0.141 ** | 0.018 | 0.011 | −0.123 * | −0.047 | 0.008 | −0.04 |
Y2 | −0.201 ** | 0.173 ** | 0.142 ** | 0.161 ** | 0.038 | 0.033 | −0.184 ** | −0.092 | 0.029 | −0.058 | |
Y3 | −0.241 ** | 0.162 ** | 0.232 ** | 0.197 ** | 0.03 | 0.046 | −0.297 ** | −0.069 | 0.044 | −0.05 | |
Y4 | 0.102 | 0.079 | −0.049 | 0.006 | 0.003 | 0.023 | 0.073 | 0.034 | −0.047 | 0.064 | |
Y5 | 0.145 ** | 0.091 | 0.129 * | 0.043 | −0.035 | −0.055 | 0.221 ** | 0.027 | −0.086 | −0.039 | |
Y6 | 0.091 | 0.122 * | 0.067 | 0.005 | −0.004 | −0.033 | −0.125 * | 0.013 | −0.057 | −0.032 | |
Y7 | −0.203 ** | 0.176 ** | 0.183 ** | 0.181 ** | 0.026 | 0.032 | −0.231 ** | −0.069 | 0.022 | −0.035 | |
500 m buffer zone | Y1 | −0.124 * | 0.321 ** | 0.025 | 0.221 ** | 0.084 | 0.01 | −0.171 ** | −0.003 | −0.058 | 0.016 |
Y2 | −0.208 ** | 0.332 ** | 0.037 | 0.265 ** | 0.129 * | 0.008 | −0.231 ** | −0.077 | −0.035 | −0.04 | |
Y3 | −0.295 ** | 0.244 ** | 0.153 ** | 0.233 ** | 0.138 * | 0.053 | −0.335 ** | −0.089 | 0.045 | 0.004 | |
Y4 | 0.133 * | 0.137 * | 0.130 * | 0.051 | −0.048 | 0.016 | 0.071 | 0.142 ** | −0.157 ** | 0.126 * | |
Y5 | 0.191 ** | 0.168 ** | 0.260 ** | 0.009 | −0.053 | −0.059 | 0.184 ** | 0.097 | −0.092 | 0.018 | |
Y6 | 0.134 * | 0.245 ** | 0.198 ** | 0.1 | −0.018 | −0.04 | −0.09 | 0.066 | −0.126 * | 0.034 | |
Y7 | −0.237 ** | 0.281 ** | 0.079 | 0.232 ** | 0.119 * | 0.036 | −0.273 ** | −0.041 | −0.004 | 0.002 | |
1000 m buffer zone | Y1 | −0.281 ** | 0.588 ** | 0.151 ** | 0.536 ** | 0.069 | 0.199 ** | −0.317 ** | −0.096 | 0.081 | 0.321 ** |
Y2 | −0.393 ** | 0.579 ** | 0.208 ** | 0.559 ** | 0.167 ** | 0.218 ** | −0.375 ** | 0.174 ** | 0.043 | 0.360 ** | |
Y3 | −0.499 ** | 0.496 ** | 0.389 ** | 0.500 ** | 0.260 ** | 0.222 ** | −0.504 ** | 0.288 ** | 0.180 ** | 0.327 ** | |
Y4 | 0.170 ** | 0.293 ** | −0.049 | 0.164 ** | −0.088 | 0.014 | −0.203 ** | 0.120 * | −0.294 ** | 0.068 | |
Y5 | 0.258 ** | 0.225 ** | 0.329 ** | 0.181 ** | −0.302 ** | −0.058 | 0.141 ** | −0.245 ** | −0.355 ** | 0.062 | |
Y6 | 0.180 ** | 0.369 ** | 0.174 ** | 0.306 ** | −0.197 ** | −0.097 | −0.018 | 0.154 ** | −0.306 ** | 0.161 ** | |
Y7 | −0.428 ** | 0.560 ** | 0.295 ** | 0.528 ** | 0.201 ** | 0.205 ** | −0.433 ** | 0.212 ** | 0.066 | 0.328 ** | |
1500 m buffer zone | Y1 | −0.207 ** | 0.430 ** | 0.079 | 0.329 ** | 0.075 | 0.102 | −0.284 ** | −0.011 | −0.068 | 0.052 |
Y2 | −0.318 ** | 0.424 ** | 0.141 ** | 0.370 ** | 0.141 ** | 0.126 * | −0.332 ** | 0.065 | −0.037 | 0.006 | |
Y3 | −0.428 ** | 0.317 ** | 0.317 ** | 0.330 ** | 0.205 ** | 0.108 * | −0.439 ** | −0.167 ** | 0.046 | 0.147 ** | |
Y4 | 0.138 * | 0.181 ** | −0.083 | 0.096 | −0.042 | 0.047 | −0.005 | 0.161 ** | −0.161 ** | 0.098 | |
Y5 | 0.253 ** | 0.136 ** | 0.345 ** | 0.103 | −0.204 ** | −0.059 | 0.132 * | −0.242 ** | −0.167 ** | 0.150 ** | |
Y6 | 0.146 ** | 0.265 ** | 0.210 ** | 0.113 ** | −0.119 * | −0.062 | 0.033 | 0.188 ** | −0.144 ** | 0.024 | |
Y7 | −0.353 ** | 0.386 ** | 0.221 ** | 0.340 ** | 0.166 ** | 0.099 | −0.380 ** | 0.091 | −0.007 | 0.081 | |
2000 m buffer zone | Y1 | −0.133 * | 0.306 ** | 0.002 | 0.172 ** | 0.067 | 0.05 | −0.126 * | 0.018 | −0.033 | 0.058 |
Y2 | −0.241 ** | 0.325 ** | 0.061 | 0.124 ** | 0.116 * | 0.067 | −0.176 ** | −0.08 | 0.006 | 0.013 | |
Y3 | −0.350 ** | 0.221 ** | 0.218 ** | 0.120 ** | 0.152 ** | 0.025 | −0.285 ** | −0.112 * | 0.09 | 0.119 * | |
Y4 | 0.106 | 0.180 ** | −0.108 * | 0.101 | −0.033 | 0.028 | 0.065 | 0.089 | −0.111 * | 0.087 | |
Y5 | 0.238 ** | 0.185 ** | 0.323 ** | 0.075 | −0.125 * | −0.073 | 0.186 * | −0.134 * | −0.120 * | 0.107 * | |
Y6 | 0.110 * | 0.175 ** | 0.223 ** | 0.006 | −0.069 | −0.06 | 0.006 | 0.075 | −0.138 * | 0.04 | |
Y7 | −0.274 ** | 0.276 ** | 0.129 * | 0.191 ** | 0.127 * | 0.032 | −0.131 * | 0.066 | 0.034 | 0.099 |
IDW | Kriging | Trend Surface | Spline | Natural Neighbor | |
---|---|---|---|---|---|
R2 | 0.985383874 | 0.977285623 | 0.621729574 | 0.828676546 | 0.961090602 |
RMSE | 2.914003447 | 2.902368713 | 2.488706625 | 2.827320784 | 2.927091981 |
Variable | Mean | Variance | Wa | p |
---|---|---|---|---|
Y1 | 86 | 8.529 | 0.965 | 0 |
Y2 | 88 | 13.895 | 0.950 | 0 |
Y3 | 82 | 36.377 | 0.889 | 0 |
Y4 | 79 | 9.144 | 0.986 | 0.002 |
Y5 | 94 | 13.544 | 0.994 | 0.222 |
Y6 | 93 | 9.113 | 0.960 | 0 |
Y7 | 80 | 14.704 | 0.950 | 0 |
Variables | M1 | M2 | M3 | M4 | M5 | M6 | M7 |
---|---|---|---|---|---|---|---|
X1 | −0.00019816 (−0.92) | −0.0007814 *** (−3.51) | −0.00173062 *** (−4.47) | 0.00107369 *** (3.32) | 0.00053515 * (2.19) | 0.00057556 ** (2.72) | −0.00086096 ** (−3.15) |
X2 | 0.00429904 *** (5.19) | 0.00540908 *** (5.48) | 0.0066031 *** (4.59) | 0.00310282 *** (3.84) | 0.00224721 * (1.99) | .00296906 ** (3.29) | 0.00540177 *** (5.26) |
X3 | 0.00414971 *** (3.31) | 0.00534804 *** (3.47) | 0.00410567 (1.70) | −0.00022114 (−0.14) | 0.00664185 *** (4.04) | 0.00421788 ** (3.18) | 0.00407687 * (2.50) |
X4 | 0.18057696 *** (4.76) | 0.12480744 ** (2.63) | 0.45315445 *** (5.19) | 0.19876456 *** (3.53) | −0.02347487 (−0.54) | 0.07403405 (1.91) | 0.26899138 *** (4.73) |
X5 | 0.05019174 * (2.42) | 0.06809959 * (2.55) | 0.16797907 *** (4.09) | −0.02767476 (1.05) | −0.05262646 (−1.82) | −0.00819725 (−0.36) | 0.09824626 *** (3.63) |
X6 | 0.02209244 (0.95 ) | 0.01899393 (0.65) | 0.13869561 ** (3.07) | 0.02586483 (0.96) | −0.08079757 ** (−2.87) | −0.03109436 (−1.41) | 0.06620023 * (2.18) |
X7 | −0.1662874 *** (−6.95) | −0.21372142 *** (−7.27) | −0.47167738 *** (−10.63) | −0.01679669 (−0.51) | 0.01593301 (0.51) | −0.03059924 (−1.19) | −0.27981642 *** (−8.95) |
X8 | 0.03085474 ** (2.66) | 0.02762988 * (2.00) | 0.09474067 *** (3.89) | 0.01392373 (0.96) | −0.00599751 (−0.43) | 0.00047415 (0.04) | 0.05649607 *** (3.54) |
X9 | 0.02789775 (0.67) | 0.03558245 (0.76) | 0.24589958 ** (3.29) | −0.08055354 (−1.84) | −0.08187814 (−1.52) | −0.06773554 (−1.57) | 0.10692261 * (2.06) |
X10 | 0.06640575 *** (3.45) | 0.07624238 *** (3.49) | 0.12397266 *** (3.44) | 0.02951012 (1.35) | 0.03569024 (1.24) | 0.0450457 (1.84) | 0.08384093 *** (3.43) |
_cons | 4.4093038 *** (553.85) | 4.4330281 *** (466.38) | 4.3374985 *** (233.47) | 4.3384706 *** (404.55) | 4.545 *** (474.31) | 4.5089679 *** (552.08) | 4.3316371 *** (366.43) |
N | 340 | 340 | 340 | 340 | 340 | 340 | 340 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, C.; Wang, L.; Zhang, Q. Study on Coupled Relationship between Urban Air Quality and Land Use in Lanzhou, China. Sustainability 2021, 13, 7724. https://doi.org/10.3390/su13147724
Yan C, Wang L, Zhang Q. Study on Coupled Relationship between Urban Air Quality and Land Use in Lanzhou, China. Sustainability. 2021; 13(14):7724. https://doi.org/10.3390/su13147724
Chicago/Turabian StyleYan, Cuixia, Lucang Wang, and Qing Zhang. 2021. "Study on Coupled Relationship between Urban Air Quality and Land Use in Lanzhou, China" Sustainability 13, no. 14: 7724. https://doi.org/10.3390/su13147724