Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability
Abstract
:1. Introduction
2. Intensive Agriculture and Crop Residues: Present Status
3. Environmental Impacts from Inefficient Use of Crop Residues
4. Management of Crop Residues for Improving Input Use Efficiencies
4.1. Improving Soil Physical Properties
4.2. Improving Soil Chemical Properties
4.3. Improving Soil Microbial Activity
4.4. Improving Soil Productivity
5. Crop Residues Improve the Fertility and Productivity of Soil
5.1. Crop Residue Management for Soil Organic Matter
5.2. Effects of Crop Residues on Soil Nutrient Status and Its Availability
5.3. Effects of Crop Residues on Soil Productivity
6. Crop Residue Management Decreases Soil Degradation
6.1. Erosion
6.2. Salinity
6.3. Buffering Capacity
6.4. Decrease in Soil Aridity
6.5. Maintaining Soil Temperature
7. Crop Residue Management Improves the Resource Use Efficiency of Rice–Wheat Systems
7.1. Residue Management for Soil Resources
7.2. Residue Management for Water Resources
7.3. Residue Management for Environmental Resources
8. Conversion Technologies for Sustainable Crop Residue Management
8.1. Thermochemical Transformation
8.1.1. Gasification
8.1.2. Pyrolysis
8.1.3. Liquefaction
8.2. Biochemical Transformation
8.2.1. Anaerobic Digestion
8.2.2. Alcoholic Fermentation
8.2.3. Photo-Biological Techniques
8.3. Conversion of Crop Residues into Bioelectricity
9. Constraints of Crop Residue Management in Rice–Wheat Systems
10. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
C | Carbon |
C:N | Carbon:Nitrogen |
CA | Conservation Agriculture |
CEC | Cation Exchange Capacity |
CH4 | Methane |
DHA | Dehydrogenase activity |
GHGs | Green House Gases |
HTL | Hydrothermal liquefaction |
MBC | Soil microbial biomass |
MFC | Microbial fuel cell |
N2O | Nitrous oxide |
NPK | Nitrogen–phosphorus–potassium |
NPMCR | National Policy for Management of Crop Residues |
RWCS | Rice–wheat cropping system |
SIC | Soil inorganic carbon |
SOC | Soil organic carbon |
References
- Kar, S.; Pramanick, B.; Brahmachari, K.; Saha, G.; Mahapatra, B.; Saha, A.; Kumar, A. Exploring the Best Tillage Option in Rice Based Diversified Cropping Systems in Alluvial Soil of Eastern India. Soil Tillage Res. 2021, 205, 104761. [Google Scholar] [CrossRef]
- Meena, R.S.; Lal, R. Legumes for Soil Health and Sustainable Management; Springer: Singapore, 2018. [Google Scholar]
- Mondal, M.; Garai, S.; Banerjee, H.; Sarkar, S.; Kundu, R. Mulching and Nitrogen Management in Peanut Cultivation: An Evaluation of Productivity, Energy Trade-Off, Carbon Footprint and Profitability. Energ. Ecol. Environ. 2020, 1–15. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Crop Residue Removal Impacts on Soil Productivity and Environmental Quality. Crit. Rev. Plant Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Chen, J.; Gong, Y.; Wang, S.; Guan, B.; Balkovic, J.; Kraxner, F. To Burn or Retain Crop Residues on Croplands? An Integrated Analysis of Crop Residue Management in China. Sci. Total Environ. 2019, 662, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Maneepitak, S.; Ullah, H.; Paothong, K.; Kachenchart, B.; Datta, A.; Shrestha, R.P. Effect of Water and Rice Straw Management Practices on Yield and Water Productivity of Irrigated Lowland Rice in the Central Plain of Thailand. Agric. Water Manag. 2019, 211, 89–97. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, B.Y.; Liu, S.L.; Qi, J.; Wang, X.; Pu, C.; Li, S.; Zhang, X.; Yang, X.; Lal, R.; et al. Sustaining Crop Production in China’s Cropland by Crop Residue Retention: A Meta-Analysis. Land Degrad. Dev. 2020, 31, 694–709. [Google Scholar] [CrossRef]
- Jat, S.L.; Parihar, C.M.; Singh, A.K.; Nayak, H.S.; Meena, B.R.; Kumar, B.; Parihar, M.D.; Jat, M.L. Differential Response from Nitrogen Sources with and Without Residue Management Under Conservation Agriculture on Crop Yields, Water-Use and Economics in Maize-Based Rotations. Field Crop. Res. 2019, 236, 96–110. [Google Scholar] [CrossRef]
- Lu, X. A Meta-Analysis of the Effects of Crop Residue Return on Crop Yields and Water Use Efficiency. PLoS ONE 2020, 15, e0231740. [Google Scholar] [CrossRef]
- Yadvinder-Singh, B.-S.; Timsina, J. Crop Residue Management for Nutrient Cycling and Improving Soil Productivity in Rice-Based Cropping Systems in the Tropics. Adv. Agron. 2005, 85, 269–407. [Google Scholar]
- Liu, Z.; Gao, T.; Tian, S.; Hu, H.; Li, G.; Ning, T. Soil Organic Carbon Increment Sources and Crop Yields Under Long-Term Conservation Tillage Practices in Wheat-Maize Systems. Land Degrad. Dev. 2020, 31, 1138–1150. [Google Scholar] [CrossRef]
- Lal, R. World Crop Residues Production and Implications of Its Use as a Biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Rathod, P.H.; Bhoyar, S.M.; Katkar, R.N.; Kadu, P.R.; Jadhao, S.D.; Konde, N.M.; Deshmukh, P.W.; Patle, P.N. Recycling and Management of Crop Residues for Sustainable Soil Health in Climate Change Scenario with Farmer’s Profit as Frontline Moto. J. Pharmacogn. Phytochem. 2019, 51–55. [Google Scholar]
- Brahmachari, K.; Sarkar, S.; Santra, D.K.; Maitra, S. Millet for Food and Nutritional Security in Drought Prone and Red Laterite Region of Eastern India. Int. J. Plant Soil Sci. 2019, 26, 1–7. [Google Scholar] [CrossRef]
- Sarkar, S.; Banerjee, H.; Ray, K.; Ghosh, D. Boron Fertilization Effects in Processing Grade Potato on an Inceptisol of West Bengal, India. J. Plant Nutr. 2018, 41, 1456–1470. [Google Scholar] [CrossRef]
- Johnson, J.; Novak, J.; Varvel, G. Crop Residue Mass Needed to Maintain Soil Organic Carbon Levels: Can It Be Determined. Bioenergy Res. 2014, 7, 481–490. [Google Scholar] [CrossRef]
- Shan, J.; Yan, X. Effects of Crop Residue Returning on Nitrous Oxide Emissions in Agricultural Soils. Atmos. Environ. 2013, 71, 170–175. [Google Scholar] [CrossRef]
- Badaruddin, M.; Reynolds, M.P.; Ageeb, O.A.A. Wheat Management in Warm Environments: Effect of Organic and Inorganic Fertilizers, Irrigation Frequency, and Mulching. Agron. J. 1999, 91, 975–983. [Google Scholar] [CrossRef]
- Purwanto, B.H.; Alam, S. Impact of Intensive Agricultural Management on Carbon and Nitrogen Dynamics in the Humid Tropics. Soil Sci. Plant Nutr. 2020, 66, 50–59. [Google Scholar] [CrossRef]
- Fang, Y.; Singh, B.P.; Collins, D.; Li, B.; Zhu, J.; Tavakkoli, E. Nutrient Supply Enhanced Wheat Residue-Carbon Mineralization, Microbial Growth, and Microbial Carbon-Use Efficiency When Residues Were Supplied at High Rate in Contrasting Soils. Soil Biol. Biochem. 2018, 126, 168–178. [Google Scholar] [CrossRef]
- Kumar, K.; Goh, K.M. Crop Residues and Management Practices: Effects on Soil Quality, Soil Nitrogen Dynamics, Crop Yield, and Nitrogen Recovery. Adv. Agron. 1999, 68, 197–319. [Google Scholar] [CrossRef]
- NPMCR (National Policy for Management of Crop Residues). Incorporation in Soil and Mulching Baling/Binder for Domestic/Industrial as Fuel. Government of India Ministry of Agriculture Department of Agriculture & Cooperation. Available online: http://agricoop.nic.in/sites/default/files/NPMCR_1.pdf (accessed on 10 February 2020).
- Brahmachari, K. Agriculture. In State of Environment Report West Bengal 2016; Rudra, K., Mukherjee, S., Mukhopadhyaya, U., Gupta, D., Eds.; West Bengal Pollution Control Board: Kolkata, India, 2016; p. 504. [Google Scholar]
- Ray, K.; Sen, P.; Goswami, R.; Sarkar, S.; Brahmachari, K.; Ghosh, A.; Nanda, M.K.; Mainuddin, M. Profitability, Energetics and GHGs Emission Estimation from Rice-Based Cropping Systems in the Coastal Saline Zone of West Bengal; India. PLoS ONE 2020, 15, e0233303. [Google Scholar] [CrossRef] [PubMed]
- FAO FAOSTAT. FAOSTAT. Available online: http://www.fao.org/faostat/en/#search/pulse (accessed on 18 November 2019).
- Burke, C.S.; Salas, E.; Smith-Jentsch, K.; Rosen, M.A. Measuring Macrocognition in Teams: Some Insights for Navigating the Complexities. In Macrocognition Metrics and Scenarios; Ashgate Publishing Ltd.: Farnham, UK, 2012; pp. 29–43. [Google Scholar]
- Raza, M.H.; Abid, M.; Yan, T.; Ali Naqvi, S.A.; Akhtar, S.; Faisal, M. Understanding Farmers’ Intentions to Adopt Sustainable Crop Residue Management Practices: A Structural Equation Modeling Approach. J. Clean. Prod. 2019, 227, 613–623. [Google Scholar] [CrossRef]
- Nyanga, P.H.; Umar, B.B.; Chibamba, D.; Mubanga, K.; Kunda-Wamuwi, C.; Mushili, B. Reinforcing Ecosystem Services Through Conservation Agriculture in Sustainable Food Systems; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Balwinder-Singh; Humphreys, E.; Gaydon, D.S.; Eberbach, P.L. Evaluation of the Effects of Mulch on Optimum Sowing Date and Irrigation Management of Zero Till Wheat in Central Punjab, India Using APSIM. F Crop Res 197. Field Crop. Res. 2016, 197, 83–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M. Effects of Crop Residue Management on Winter Durum Wheat Productivity in a Long Term Experiment in Southern Italy. Eur. J. Agron. 2016, 77, 188–198. [Google Scholar] [CrossRef]
- Aynehband, A.; Gorooei, A.; Moezzi, A.A. Vermicompost: An Eco-Friendly Technology for Crop Residue Management in Organic Agriculture. Energy Procedia 2017, 141, 667–671. [Google Scholar] [CrossRef]
- Brahmachari, K.; Nanda, M.K.; Saha, H.; Goswami, R.; Ray, K.; Sarkar, S.; Ghosh, A. Final report of the project on Cropping systems intensification in the salt affected coastal zones of Bangladesh and West Bengal, India (CSI4CZ). Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India. PLoS ONE 2020, 15, 1–88. [Google Scholar]
- Valkama, E.; Kunypiyaeva, G.; Zhapayev, R.; Karabayev, M.; Zhusupbekov, E.; Perego, A.; Schillaci, C.; Sacco, D.; Moretti, B.; Grignani, C.; et al. Can Conservation Agriculture Increase Soil Carbon Sequestration? A Modelling Approach. Geoderma 2020, 369, 114298. [Google Scholar] [CrossRef]
- Smitha, G.R.; Basak, B.B.; Thondaiman, V.; Saha, A. Nutrient Management through Organics, Bio-Fertilizers and Crop Residues Improves Growth, Yield and Quality of Sacred Basil (Ocimum Sanctum Linn). Ind. Crop. Prod. 2019, 128, 599–606. [Google Scholar] [CrossRef]
- Carlesso, L.; Beadle, A.; Cook, S.M.; Evans, J.; Hartwell, G.; Ritz, K.; Sparkes, D.; Wu, L.; Murray, P.J. Soil Compaction Effects on Litter Decomposition in an Arable Field: Implications for Management of Crop Residues and Headlands. Appl. Soil Ecol. 2019, 134, 31–37. [Google Scholar] [CrossRef]
- Wang, X.; Qi, J.Y.; Zhang, X.Z.; Li, S.; Latif Virk, A.; Zhao, X.; Xiao, X.; Zhang, H. Effects of Tillage and Residue Management on Soil Aggregates and Associated Carbon Storage in a Double Paddy Cropping System. Soil Tillage Res. 2019, 194, 104339. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bandyopadhyay, K.K.; Pradhan, S.; Singh, R.; Datta, S.P. Effects of Irrigation, Crop Residue Mulch and Nitrogen Management in Maize (Zea mays L.) on Soil Carbon Pools in a Sandy Loam Soil of Indo-Gangetic Plain Region. Catena 2018, 165, 207–216. [Google Scholar] [CrossRef]
- Singh, V.K.; Dwivedi, B.S.; Yadvinder-Singh; Singh, S.K.; Mishra, R.P.; Shukla, A.K.; Rathore, S.S.; Shekhawat, K.; Majumdar, K.; Jat, M.L. Effect of Tillage and Crop Establishment, Residue Management and K Fertilization on Yield, K Use Efficiency and Apparent K Balance Under Rice-Maize System in North-Western India. F Crop Res 224. Field Crop. Res. 2018, 224, 1–12. [Google Scholar] [CrossRef]
- Samui, I.; Skalicky, M.; Sarkar, S.; Brahmachari, K.; Sau, S.; Ray, K.; Hossain, A.; Ghosh, A.; Nanda, M.K.; Bell, R.W.; et al. Yield Response, Nutritional Quality and Water Productivity of Tomato (Solanum Lycopersicum L.) Are Influenced by Drip Irrigation and Straw Mulch in the Coastal Saline Ecosystem of Ganges Delta, India. Sustainability 2020, 12, 6779. [Google Scholar] [CrossRef]
- Escalante, L.E.; Brye, K.R.; Faske, T.R. Nematode Populations as Affected by Residue and Water Management in a Long-Term Wheat-Soybean Double-Crop System in Eastern Arkansas. Appl. Soil Ecol. 2020, 157, 103761. [Google Scholar] [CrossRef]
- Rusinamhodzi, L.; Corbeels, M.; Giller, K.E. Diversity in Crop Residue Management Across an Intensification Gradient in Southern Africa: System Dynamics and Crop Productivity. Field Crop. Res. 2016, 185, 79–88. [Google Scholar] [CrossRef]
- Eriksen-Hamel, N.S.; Speratti, A.B.; Whalen, J.K.; Légère, A.; Madramootoo, C.A. Earthworm Populations and Growth Rates Related to Long-Term Crop Residue and Tillage Management. Soil Tillage Res. 2009, 104, 311–316. [Google Scholar] [CrossRef]
- Frazão, J.; de Goede, R.G.M.; Salánki, T.E.; Brussaard, L.; Faber, J.H.; Hedde, M.; Pulleman, M.M. Responses of Earthworm Communities to Crop Residue Management After Inoculation of the Earthworm Lumbricus terrestris (Linnaeus, 1758). Appl. Soil Ecol. 2019, 142, 177–188. [Google Scholar] [CrossRef]
- Puget, P.; Lal, R. Soil Organic Carbon and Nitrogen in a Mollisol in Central Ohio as Affected by Tillage and Land Use. Soil Tillage Res. 2005, 80, 201–213. [Google Scholar] [CrossRef]
- Liang, F.; Li, J.; Yang, X.; Huang, S.; Cai, Z.; Gao, H.; Ma, J.; Cui, X.; Xu, M. Three-Decade Long Fertilization-Induced Soil Organic Carbon Sequestration Depends on Edaphic Characteristics in Six Typical Croplands. Sci. Rep. 2016, 6, 30350. [Google Scholar] [CrossRef]
- Garai, S.; Mondal, M.; Mukherjee, S. Smart Practices and Adaptive Technologies for Climate Resilient Agriculture; Maitra, S., Pramanick, B., Eds.; New Delhi Publishers: Kolkata, India, 2020; pp. 327–358. [Google Scholar]
- Sombrero, A.; de Benito, A. Carbon Accumulation in Soil. Ten-Year Study of Conservation Tillage and Crop Rotation in a Semi-Arid Area of Castile-Leon, Spain. Soil Till. Res. 2010, 107, 64–70. [Google Scholar] [CrossRef]
- Carbon Sequestration in Agricultural Soils. Economic and sector work Report number 67395-GLB 2012, doi:10.1017/S0021859609990104. Available online: http://documents1.worldbank.org/curated/en/751961468336701332/pdf/673950REVISED000CarbonSeq0Web0final.pdf (accessed on 10 February 2020).
- Wang, W.J.; Dalal, R.C.; Moody, P.W. Soil Carbon Sequestration and Density Distribution in a Vertosol Under Different Farming Practices. Soil Res. 2004, 42, 875–882. [Google Scholar] [CrossRef]
- Conteh, A.; Blair, G.J.; Rochester, I.J. Soil Organic Carbon Fractions in a Vertisol Under Irrigated Cotton Production as Affected by Burning and Incorporating Cotton Stubble. Soil Res. 1998, 36, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop Rotational Diversity Enhances Belowground Communities and Functions in an Agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Bhupinderpal-Singh, R.Z.; Bowden, J.W. Carbon, Nitrogen and Sulphur Cycling Following Incorporation of Canola Residue of Different Sizes into a Nutrient-Poor Sandy Soil. Soil Biol. Biochem. 2006, 38, 1591–1597. [Google Scholar]
- Salas, A.M.; Elliott, E.T.; Westfall, D.G.; Cole, C.V.; Six, J. The Role of Particulate Organic Matter in Phosphorus Cycling. Soil Sci. Soc. Am. J. 2003, 67, 181–189. [Google Scholar] [CrossRef]
- Pituello, C.; Polese, R.; Morari, F.; Berti, A. Outcomes from a Long-Term Study on Crop Residue Effects on Plant Yield and Nitrogen Use Efficiency in Contrasting Soils. Eur. J. Agron. 2016, 77, 179–187. [Google Scholar] [CrossRef]
- Piccoli, I.; Sartori, F.; Polese, R.; Berti, A. Crop Yield After 5 Decades of Contrasting Residue Management. Nutr. Cycl. Agroecosyst. 2020, 117, 231–241. [Google Scholar] [CrossRef]
- Du Preez, C.C.; Steyn, J.T.; Kotze, E. Long-Term Effects of Wheat Residue Management on Some Fertility Indicators of a Semi-Arid Plinthosol. Soil Tillage Res. 2001, 63, 25–33. [Google Scholar] [CrossRef]
- Salinas-Garcia, J.R.; Báez-González, A.D.; Tiscareño-López, M.; Rosales-Robles, E. Residue Removal and Tillage Interaction Effects on Soil Properties Under Rain-Fed Corn Production in Central Mexico. Soil Tillage Res. 2001, 59, 67–79. [Google Scholar] [CrossRef]
- Sarkar, S.; Ghosh, A.; Brahmachari, K. Application of APSIM Model for Assessing the Complexities of Rice-based Cropping Systems of South-Asia; Maitra, S., Pramanick, B., Eds.; New Delhi Publishers: Kolkata, India, 2020; pp. 212–233. [Google Scholar]
- Whitbread, A.; Blair, G.; Konboon, Y.; Lefroy, R.; Naklang, K. Managing Crop Residues, Fertilizers and Leaf Litters to Improve Soil C, Nutrient Balances, and the Grain Yield of Rice and Wheat Cropping Systems in Thailand and Australia. Agric. Ecosyst. Environ. 2003, 100, 251–263. [Google Scholar] [CrossRef]
- Poeplau, C.; Reiter, L.; Berti, A.; Kätterer, T. Qualitative and Quantitative Response of Soil Organic Carbon to 40 Years of Crop Residue Incorporation Under Contrasting Nitrogen Fertilization Regimes. Soil Res. 2017, 55, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hijbeek, R.; van Ittersum, M.K.; ten Berge, H.F.M.; Gort, G.; Spiegel, H.; Whitmore, A.P. Do Organic Inputs Matter: A Meta-Analysis of Additional Yield Effects for Arable Crops in Europe. Plant Soil 2017, 411, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Schjønning, P.; Jensen, J.L.; Bruun, S.; Jensen, L.S.; Christensen, B.T.; Munkholm, L.J.; Oelofse, M.; Baby, S.; Knudsen, L. The Role of Soil Organic Matter for Maintaining Crop Yields: Evidence for a Renewed Conceptual Basis. Adv. Agron. 2018, 150, 35–79. [Google Scholar] [CrossRef]
- Wei, W.; Yan, Y.; Cao, J.; Christie, P.; Zhang, F.; Fan, M. Effects of Combined Application of Organic Amendments and Fertilizers on Crop Yield and Soil Organic Matter: An Integrated Analysis of Long-Term Experiments. Agric. Ecosyst. Environ. 2016, 225, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Mandal, K.G.; Misra, A.K.; Hati, K.M.; Bandyopadhyay, K.K.; Ghosh, P.K.; Mohanty, M. Rice Residue- Management Options and Effects on Soil Properties and Crop Productivity. J. Food Agric. Environ. 2004, 2, 224–231. [Google Scholar]
- Adimassu, Z.; Alemu, G.; Tamene, L. Effects of Tillage and Crop Residue Management on Runoff, Soil Loss and Crop Yield in the Humid Highlands of Ethiopia. Agric. Syst. 2019, 168, 11–18. [Google Scholar] [CrossRef]
- Ghosh, K.; Sarkar, S.; Brahmachari, K.; Porel, S. Standardizing Row Spacing of Vetiver for River Bank Stabilization of Lower Ganges. Curr. J. Appl. Sci. Technol. 2018, 26, 1–12. [Google Scholar] [CrossRef]
- Turmel, M.S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop Residue Management and Soil Health: A Systems Analysis. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Fan, X.W.; Chi, B.L.; Jiao, X.Y.; Li, D.W.; Zhang, Z.P. Soil Improvement and Yield Increment in Salt-Alkaline Fields by Straw Mulch. Agric. Res. Arid Areas 1993, 11, 13–18. [Google Scholar]
- Yang, Y.M.; Liu, X.J.; Li, W.Q.; Li, C.Z. Effect of Different Mulch Materials on Winter Wheat Production in Desalinized Soil in Heilonggang Region of North China. J. Zhejiang Univ. Sci. B 2006, 7, 858–867. [Google Scholar] [CrossRef] [Green Version]
- Govaerts, B.; Sayre, K.D.; Lichter, K.; Dendooven, L.; Deckers, J. Influence of Permanent Raised Bed Planting and Residue Management on Physical and Chemical Soil Quality in Rain Fed Maize/Wheat Systems. Plant Soil 2007, 291, 39–54. [Google Scholar] [CrossRef]
- Sarkar, S.; Samui, I.; Brahmachari, K.; Ray, K.; Ghosh, A.; Nanda, M.K. Management Practices for Utera Pulses in Rice-Fallow System Under Coastal Saline Zone of West Bengal. J. Indian Soc. Coast Agric. Res. 2019, 37, 98–103. [Google Scholar]
- Jat, R.K.; Singh, R.G.; Gupta, R.K.; Gill, G.; Chauhan, B.S.; Pooniya, V. Tillage, Crop Establishment, Residue Management and Herbicide Applications for Effective Weed Control in Direct Seeded Rice of Eastern Indo–Gangetic Plains of South Asia. Crop Prot. 2019, 123, 12–20. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, D.; Das, T.K.; Shrivastava, M.; Mishra, A.K.; Bandyopadhyay, K.K.; Aggarwal, P.; Chaudhari, S.K. Conservation Agriculture Had a Strong Impact on the Sub-Surface Soil Strength and Root Growth in Wheat After a 7-Year Transition Period. Soil Tillage Res. 2019, 195, 104385. [Google Scholar] [CrossRef]
- Mondal, M.; Skalicky, M.; Garai, S.; Hossain, A.; Sarkar, S.; Banerjee, H.; Kundu, R.; Brestic, M.; Barutcular, C.; Erman, M.; et al. Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part II. Effect on Phenology, Growth, Yield Attributes, Pod Quality, Profitability and Nitrogen Use Efficiency. Agronomy 2020, 10, 1513. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, J.; Wu, W.; Cai, D.; Lv, J.; Jiang, G.; Huang, J.; Gao, J.; Hartmann, R.; Gabriels, D. Effects of Conservation Tillage Practices on Winter Wheat Water-Use Efficiency and Crop Yield on the Loess Plateau, China. Agric. Water Manag. 2007, 87, 307–314. [Google Scholar] [CrossRef]
- Shen, Y.; McLaughlin, N.; Zhang, X.; Xu, M.; Liang, A. Effect of Tillage and Crop Residue on Soil Temperature Following Planting for a Black Soil in Northeast China. Sci. Rep. 2018, 8, 4500. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Prueger, J.H. Microclimate Effects of Crop Residues on Biological Processes. Theor. Appl. Climatol. 1996, 54, 47–59. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Tillage Effects on Physical and Hydrological Properties of a Typic Argiaquoll in Central Ohio. Soil Sci. 2003, 168, 802–811. [Google Scholar] [CrossRef]
- Kumar, V.; Jat, H.S.; Sharma, P.C.; Balwinder-Singh; Gathala, M.K.; Malik, R.K.; Kamboj, B.R.; Yadav, A.K.; Ladha, J.K.; Raman, A.; et al. Can Productivity and Profitability Be Enhanced in Intensively Managed Cereal Systems While Reducing the Environmental Footprint of Production? Assessing Sustainable Intensification Options in the Breadbasket of India. Agric. Ecosyst. Environ. 2018, 252, 132–147. [Google Scholar] [CrossRef]
- Choudhary, K.M.; Jat, H.S.; Nandal, D.P.; Bishnoi, D.K.; Sutaliya, J.M.; Choudhary, M.; Yadvinder-Singh; Sharma, P.C.; Jat, M.L. Evaluating Alternatives to Rice-Wheat System in Western Indo-Gangetic Plains: Crop Yields, Water Productivity and Economic Profitability. Field Crop. Res. 2018, 218, 1–10. [Google Scholar] [CrossRef]
- Yadvinder-Singh; Singh, M.; Sidhu, H.S.; Humphreys, E.; Thind, H.S.; Jat, M.L.; Blackwell, J.; Singh, V. Nitrogen Management for Zero Till Wheat with Surface Retention of Rice Residues in North-West India. Field Crop. Res. 2015, 184, 183–191. [Google Scholar] [CrossRef]
- Gadde, B.; Menke, C.; Wassmann, R. Rice Straw as a Renewable Energy Source in India, Thailand and the Philippines: Overall Potential and Limitations for Energy Contribution and Greenhouse Gas Migration. Biomass Bioenergy 2009, 33, 1532–1546. [Google Scholar] [CrossRef]
- Verhulst, N.; Sayre, K.D.; Vargas, M.; Crossa, J.; Deckers, J.; Raes, D.; Govaerts, B. Wheat Yield and Tillage-Straw Management System x Year Interaction Explained by Climatic covariables for an Irrigated Bed Planting System in Northwestern Mexico. Field Crop. Res. 2011, 124, 347–356. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, D.; Lal, S.S. Integrated Use of Crop Residues and Fertilizers for Sustainability of Potato (Solanum tuberosum) Based Cropping Systems in Bihar. Indian J. Agron. 2010, 55, 203–208. [Google Scholar]
- Chavan, M.L.; Phad, P.R.; Khodke, U.M.; Jadhav, S.B. Effect of Organic Mulches on Soil Moisture Conservation and Yield of Rabi Sorghum (M-35-1). Int. J. Agric. Eng. 2010, 2, 322–328. [Google Scholar]
- Rahman, M.A.; Chikushi, J.; Saifizzaman, M.; Lauren, J.G. Rice Straw Mulching and Nitrogen Response of No-Till Wheat Following Rice in Bangladesh. Field Crops Res. 2005, 91, 71–81. [Google Scholar] [CrossRef]
- Singh, C.P.; Panigrahy, S. Characterisation of Residue Burning from Agricultural System in India Using Space-Based Observations. J. Indian Soc. Remote 2011, 39, 423. [Google Scholar] [CrossRef]
- Erenstein, O.; Laxmi, V. Zero-Tillage Impacts in India’s Rice Wheat Systems: A Review. Soil Tillage Res. 2008, 100, 1–14. [Google Scholar] [CrossRef]
- Ladha, J.K.; Kumar, V.; Alam, M.M.; Sharma, S.; Gathala, M.; Chandana, P.; Saharawat, Y.S.; Balasubramanian, V. Integrating Crop and Resource Management Technologies for Enhanced Productivity Profitability, and Sustainability of the Rice-Wheat System in South Asia. In Integrated Crop and Resource Management in the Rice-Wheat System of South Asia; Ladha, J.K., Singh, Y., Erenstein, O., Hardy, B., Eds.; International Rice Research Institute: Los Banos, Philippines, 2009; pp. 69–108. [Google Scholar]
- Sidhu, H.S.; Manpreet-Singh; Humphreys, E.; Yadvinder-Singh; Balwinder-Singh; Dhillon, S.S.; Blackwell, J.; Bector, V.; Malkeet-Singh; Sarbjeet-Singh. The Happy Seeder Enables Direct Drilling of Wheat into Rice Stubble. Aust. J. Exp. Agric. 2007, 47, 844–854. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, D.; Garg, R.N.; Tomar, R.K.; Singh, R.; Sharma, S.K.; Singh, R.K.; Trivedi, S.M.; Mittal, R.B.; Sharma, P.K.; Kamble, K.H. Synthetic and Organic Mulching and Nitrogen Effect on Winter Wheat (Triticum aestivum L.) in a Semi-Arid Environment. Agric. Water Manag. 2010, 97, 738–748. [Google Scholar] [CrossRef]
- Thakur, T.C. 2003 Crop Residue as Animal Feed: Addressing Resource Conservation Issues in Rice–Wheat Systems of South Asia, a Resource Book; Rice Wheat Consortium for Indo-Gangetic Plains (CIMMYT): El Batán, Mexico, 2003. [Google Scholar]
- Hegde, N.G. Forage Resource Development in India. In Souvenir of IGFRI Foundation Day; 2010; Available online: http://www.baif.org.in (accessed on 12 February 2020).
- Sidhu, B.S.; Beri, V. Experience with Managing Rice Residue in Intensive Rice-Wheat Cropping System in Punjab. In Conservation Agriculture- Status and Prospects; Abrol, I.P., Gupta, R.K., Malik, R.K., Eds.; Center for Arabic Study Abroad: New Delhi, India, 2005; pp. 55–63. [Google Scholar]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of Biochar Amendment on Soil Quality Crop Yield and Greenhouse Gas Emission in a Chinese Rice Paddy: A Field Study of 2 Consecutive Rice Growing Cycles. Field Crop. Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Prabakar, D.; Suvetha K, S.; Manimudi, V.T.; Mathimani, T.; Kumar, G.; Rene, E.R.; Pugazhendhi, A. Pretreatment Technologies for Industrial Effluents: Critical Review on Bioenergy Production and Environmental Concerns. J. Environ. Manag. 2018, 218, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, R.K.; Ramadoss, G.; Jain, A.K.; Dhiman, R.K.; Bhatia, S.K.; Bhatt, A.K. Conversion of Waste Biomass into Gaseous Fuel: Present Status and Challenges in India. Bioenergy Res. 2020, 13, 1046–1068. [Google Scholar] [CrossRef]
- Naik, S.N.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of First and Second Generation Biofuels: A Comprehensive Review. Renew. Sustain. Energy Rev. 2010, 14, 578–597. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; Benyounis, K.Y.; Olabi, A.G. Pretreatment Techniques Used in Biogas Production from Grass. Renew. Sustain. Energy Rev. 2017, 68, 1193–1204. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D.; Show, P. Waste to Bioenergy: A Review on the Recent Conversion Technologies. BMC Energy 2019, 1, 1–22. [Google Scholar] [CrossRef]
- Goyal, H.B.; Seal, D.; Saxena, R.C. Bio-Fuels from Thermochemical Conversion of Renewable Resources: A Review. Renew. Sustain. Energy Rev. 2008, 12, 504–517. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Zawawi, N.A.; Kasim, F.H.; Inayat, A.; Khasri, A. Assessing the Gasification Performance of Biomass: A Review on Biomass Gasification Process Conditions, Optimization and Economic Evaluation. Renew. Sustain. Energy Rev. 2016, 53, 1333–1347. [Google Scholar] [CrossRef]
- Watson, J.; Zhang, Y.; Si, B.; Chen, W.T.; de Souza, R. Gasification of Biowaste: A Critical Review and Outlooks. Renew. Sustain. Energy Rev. 2018, 83, 1–17. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Y.; Cao, J.; Liu, C.; Dong, L.; Xu, L.; Zha, J. Experimental Study of Biomass Gasification with Oxygen-Enriched Air in Fluidized Bed Gasifier. Sci. Total Environ. 2018, 626, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Dhyani, V.; Bhaskar, T. A Comprehensive Review on the Pyrolysis of Lignocellulosic Biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Jahirul, M.; Rasul, M.; Chowdhury, A.; Ashwath, N. Biofuels Production Through Biomass Pyrolysis—A Technological Review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Bezergianni, S. Hydrothermal Liquefaction of Various Biomass and Waste Feedstocks for Biocrude Production: A State of the Art Review. Renew. Sustain. Energy Rev. 2017, 68, 113–125. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, Y.; Schideman, L.; Funk, T.; Wang, Z. Distributions of Carbon and Nitrogen in the Products from Hydrothermal Liquefaction of Low-Lipid Microalgae. Energy Environ. Sci. 2011, 4, 4587. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Ducey, T.; Ro, K.S.; Hunt, P.G. Livestock Waste-to-Bioenergy Generation Opportunities. Bioresour. Technol. 2008, 99, 7941–7953. [Google Scholar] [CrossRef]
- Bibi, R.; Ahmad, Z.; Imran, M.; Hussain, S.; Ditta, A.; Mahmood, S.; Khalid, A. Algal Bioethanol Production Technology: A Trend Towards Sustainable Development. Renew. Sustain. Energy Rev. 2017, 71, 976–985. [Google Scholar] [CrossRef]
- Schwartz, A.; Zeiger, E. Metabolic Energy for Stomatal Opening. Roles of Photophosphorylation and Oxidative Phosphorylation. Planta 1984, 161, 129–136. [Google Scholar] [CrossRef]
- Chatzikonstantinou, D.; Tremouli, A.; Papadopoulou, K.; Kanellos, G.; Lampropoulos, I.; Lyberatos, G. Bioelectricity Production from Fermentable Household Waste in a Dual-Chamber Microbial Fuel Cell. Waste Manag. Res. 2018, 36, 1037–1042. [Google Scholar] [CrossRef]
- Farine, D.R.; O’Connell, D.A.; John Raison, R.; May, B.M.; O’Connor, M.H.; Crawford, D.F.; Herr, A.; Taylor, J.A.; Jovanovic, T.; Campbell, P.K.; et al. An Assessment of Biomass for Bioelectricity and Biofuel, and for Greenhouse Gas Emission Reduction in Australia. GCB Bioenergy 2012, 4, 148–175. [Google Scholar] [CrossRef]
- White, E.M.; Latta, G.; Alig, R.J.; Skog, K.E.; Adams, D.M. Biomass Production from the U.S. Forest and Agriculture Sectors in Support of a Renewable Electricity Standard. Energy Policy 2013, 58, 64–74. [Google Scholar] [CrossRef]
- Timsina, J.; Connor, D.J. Productivity and Management of Rice-Wheat Cropping Systems: Issues and Challenges. Field Crop. Res. 2001, 69, 93–132. [Google Scholar] [CrossRef]
- Ladha, J.K.; Dawe, D.; Pathak, H.; Padre, A.T.; Yadav, R.L.; Singh, B.; Singh, Y.; Singh, Y.; Singh, P.; Kundu, A.L.; et al. How Extensive Are Yield Declines in Long-Term Rice-Wheat Experiments in Asia? Field Crop. Res. 2003, 81, 159–180. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation Tillage Impacts on Soil, Crop and the Environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, R.; Kukal, S.S.; Busari, M.A.; Arora, S.; Yadav, M. Sustainability Issues on Rice–Wheat Cropping System. Int. Soil Water Conserv. Res. 2016, 4, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Jagir, S.S.; Bijay-Singh, K.K.; Kuldip, K. Managing Crop Residues in the Rice-Wheat System of the Indo-Gangetic Plain. In ASA Special Publications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 173–195. [Google Scholar]
- Kukal, S.S.; Aggarwal, G.C. Puddling Depth and Intensity Effects in Rice-Wheat System on a Sandy Loam Soil II. Water Use and Crop Performance. Soil Tillage Res. 2003, 74, 37–45. [Google Scholar] [CrossRef]
- Hobbs, P.R. Sustainability of Rice-Wheat Production Systems in Asia. Rapa Publ. 1997, 49, 279–280. [Google Scholar] [CrossRef]
- Thind, H.S.; Sharma, S.; Yadvinder Singh, S.H.S.; Sidhu, H.S. Rice–Wheat Productivity and Profitability with Residue, Tillage and Green Manure Management. Nutr. Cycl. Agroecosyst. 2019, 113, 113–125. [Google Scholar] [CrossRef]
- Singh, Y.; Sidhu, H.S. Management of Cereal Crop Residues for Sustainable Rice-Wheat Production System in the Indo-Gangetic Plains of India. Proc. Indian Natl. Sci. Acad. 2014, 80, 95–114. [Google Scholar] [CrossRef]
Techniques | Outputs |
---|---|
Gasification | Syngas |
Liquefaction | Bio-oil |
Pyrolysis | Syngas, Bio-oil, Biochar |
Combustion | Electricity |
Anaerobic digestion | Biogas |
Alcoholic fermentation | Bio-ethanol |
Photobiological hydrogen production | Bio-hydrogen |
Transesterification | Biodiesel |
Photosynthetic microbial fuel cell | Electricity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, S.; Skalicky, M.; Hossain, A.; Brestic, M.; Saha, S.; Garai, S.; Ray, K.; Brahmachari, K. Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability. Sustainability 2020, 12, 9808. https://doi.org/10.3390/su12239808
Sarkar S, Skalicky M, Hossain A, Brestic M, Saha S, Garai S, Ray K, Brahmachari K. Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability. Sustainability. 2020; 12(23):9808. https://doi.org/10.3390/su12239808
Chicago/Turabian StyleSarkar, Sukamal, Milan Skalicky, Akbar Hossain, Marian Brestic, Saikat Saha, Sourav Garai, Krishnendu Ray, and Koushik Brahmachari. 2020. "Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability" Sustainability 12, no. 23: 9808. https://doi.org/10.3390/su12239808