Analysis of Possibility to Apply Preharvest 1-Methylcyclopropene (1-MCP) Treatment to Delay Harvesting of Red Jonaprince Apples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedures
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eurostat. Two-thirds of the EU’s fruit plantation area is concentrated in Spain, Italy and Poland. In Eurostat Newsrelease; Eurostat: Brussels, Belgium, 2019; Volume 32, pp. 1–4. [Google Scholar]
- Niszczota, S. Horticultural production orchard survey in 2017. Inf. Syg. 2018, 30, 1–10. (In Polish) [Google Scholar]
- Adamczyk, M.; Rembiałkowska, E.; Wasiak-Zys, G. The comparison of sensory quality of apples from organic and conventional production and after storage. Zywn.-Nauka Technol. Jakosc 2006, 2, 11–19. (In Polish) [Google Scholar]
- European Union. No 543/2011 of 7 June 2011 Laying Down Detailed Rules for the Application of Council Regulation (EC) No 1234/2007 in Respect of the Fruit and Vegetables and Processed Fruit and Vegetables Sectors; Commission Implementing Regulation (EU): Brussels, Belgium, 2011. [Google Scholar]
- Krautgartner, R.; De Belder, T.; Lieberz, S.; Pinckaers, M.; Bettini, O.; The Group of FAS Fruit Specialists in the EU. Fresh Deciduous Fruit Annual. Report Number: E42019-0030. Available online: https://agfstorage.blob.core.windows.net/misc/FP_com/2019/11/04/EUApple2019.pdf (accessed on 17 April 2020).
- Poland Increases Red Jonaprince Apples Production. Available online: http://www.blackseagrain.net/novosti/poland-increases-red-jonaprince-apples-production. (accessed on 17 April 2020).
- Kviklysd, D.; Kviklienė, N.; Ūselis, N. Suitability of ‘Jonagold’ apple clones for commercial growing in Lithuania. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2013, 67, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Csihon, Á.; Gonda, I. Fruit coloration of apple cultivars. Int. J. Hortic. Sci. 2016, 22, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Podbielska, M.; Szpyrka, E.; Piechowicz, B.; Zwolak, A.; Sadło, S. Behavior of fluopyram and tebuconazole and some selected pesticides in ripe apples and consumer exposure assessment in the applied crop protection framework. Environ. Monit. Assess. 2017, 189, 350. [Google Scholar] [CrossRef] [PubMed]
- Skendrović Babojelić, M.; Keškić, J.; Vuković, D.T.; Mihaljević, I.; Šic Žlabur, J.; Antolković, A.M.; Silovski, Z. Influence of reflective groundcover on physico-chemical properties of ‘Wilton’s ®Red Jonaprince’ apples. Pomolog. Croat. 2019, 23, 25–40. [Google Scholar] [CrossRef]
- Błaszczyk, J.; Gasparski, K. Influence of 1-methylocyclopropene (1-MCP) on the quality and storability of ‘Red Jonaprince’ apples stored in different conditions. Acta Sci. Pol. Hortoru. 2019, 18, 7–15. [Google Scholar] [CrossRef]
- Yuan, R.; Carbaugh, D.H. Effects of NAA, AVG, and 1-MCP on ethylene biosynthesis, preharvest fruit drop, Fruit maturity, and quality of ‘Golden Supreme’ and ‘Golden Delicious’ apples. HortScience 2007, 42, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Tomala, K.; Grzęda, M.; Guzek, D.; Głąbska, D.; Gutkowska, K. The effects of preharvest 1-methylcyclopropene (1-mcp) treatment on the fruit quality parameters of cold-stored ‘Szampion’ cultivar apples. Agriculture 2020, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Zucoloto, M.; Ku, K.-M.; Kim, M.J.; Kushad, M.M. Influence of 1-Methylcyclopropene treatment on postharvest quality of four scab (Venturia inaequalis)-Resistant apple cultivars. J. Food Qual. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Watkins, C.B.; James, H.; Nock, J.F.; Reed, N.; Oakes, R.L. Preharvest application of 1-methylcyclopropene (1-mcp) to control fruit drop of apples, and its effects on postharvest quality. Acta Hortic. 2010, 877, 365–374. [Google Scholar] [CrossRef]
- DeLong, J.M.; Prange, R.K.; Leyte, J.C.; Harrison, P.A. A new technology that determines low-oxygen thresholds in controlled-atmosphere-stored apples. HortTechnology 2004, 14, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Łysiak, G. Measurement of ethylene production as a method for determining the optimum harvest date of ‘Jonagored’ apples. Folia Hortic. 2014, 26, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Brookfield, P.; Murphy, P.; Harker, R.; MacRae, E. Starch degradation and starch pattern indices; interpretation and relationship to maturity. Postharvest Biol. Technol. 1997, 11, 23–30. [Google Scholar] [CrossRef]
- Streif, J. Optimum harvest date for different apple cultivars in the ‘Bodensee’ area. In Determination and Prediction of Optimum Harvest Date of Apples and Pears: Proceedings of a Meeting of the Working Group on Optimum Harvest Date; de Jager, A., Johnson, D., Hohn, E., Eds.; European Commission: Brussels, Belgium, 1996; pp. 15–20. [Google Scholar]
- Sakhale, B.K.; Gaikwad, S.S.; Chavan, R.F. Application of 1-methylcyclopropene on mango fruit (Cv. Kesar): Potential for shelf life enhancement and retention of quality. J. Food Sci. Technol. 2017, 55, 776–781. [Google Scholar] [CrossRef]
- Hofman, P.J.; Jobin Décor, M.; Meiburg, G.F.; Macnish, A.J.; Joyce, D.C. Ripening and quality responses of avocado, custard apple, mango and papaya fruit to 1-methylcyclopropene. Aust. J. Exp. Agric. 2001, 41, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Shen, L.; Fu, D.; Si, Z.; Wu, B.; Chen, W.; Li, X. Effects of the combination treatment of 1-MCP and ethylene on the ripening of harvested banana fruit. Postharvest Biol. Technol. 2015, 107, 23–32. [Google Scholar] [CrossRef]
- Leskovar, D.L.; Agehara, S.; Goreta Ban, S. 1-MCP preharvest spray application to synchronize harvest and improve fruit quality of cantaloupe. HortScience 2006, 41. [Google Scholar] [CrossRef] [Green Version]
- Villalobos-Acuna, M.G.; Biasi, W.V.; Flores, S.; Mitcham, E.J. Preharvest application of 1-Methylcyclopropene influences fruit drop and storage potential of ‘Bartlett’ pears. HortScience 2010, 45, 610–616. [Google Scholar] [CrossRef]
- Wrzodak, A.; Gajewski, M. Effect of 1-MCP treatment on storage potential of tomato fruit. J. Hortic. Res. 2015, 23, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Watkins, C.B. Overview of 1-Methylcyclopropene trials and uses for edible horticultural crops. HortScience 2008, 43, 86–94. [Google Scholar] [CrossRef]
- Sabban-Amin, R.; Feygenberg, O.; Belausov, E.; Pesis, E. Low oxygen and 1-MCP pretreatments delay superficial scald development by reducing reactive oxygen species (ROS) accumulation in stored ‘Granny Smith’ apples. Postharvest Biol. Technol. 2011, 62, 295–304. [Google Scholar] [CrossRef]
- Ozkaya, O.; Dündar, Ö. Influence of 1-methylcyclopropene (1-MCP) on ‘Fuji’ apple quality during long-term storage. J. Food Agric. Environ. 2009, 7, 146–148. [Google Scholar]
- Elfving, D.C.; Drake, S.R.; Reed, A.; Visser, D.B. Preharvest applications of sprayable 1-methylcyclopropene in the orchard for management of apple harvest and postharvest condition. HortScience 2007, 42, 1192–1199. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kang, I.-K.; Nock, J.F.; Watkins, C.B. Effects of preharvest and postharvest applications of 1-Methylcyclopropene on fruit quality and physiological disorders of ‘Fuji’ apples during storage at warm and cold Temperatures. HortScience 2019, 54, 1375–1383. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.; Kim, D.H.; Lee, J.; Choi, D.G.; Han, J.S.; Kwon, S.I.; Kweon, H.J.; Kang, I.K. Effect of preharvest sprayable 1-Methylcyclopropene (1-MCP) treatment on fruit quality attributes in cold stored ‘Gamhong’ apples. Prot. Hortic. Plant Fact. 2013, 22, 279–283. [Google Scholar] [CrossRef]
- Rutkowski, K.P.; Michalczuk, B.; Konopacki, P. Nondestructive determination of ‘Golden Delicious’ apple quality and harvest maturity. J. Fruit Orn. Plant. Res. 2008, 16, 39–52. [Google Scholar]
- Watkins, C.B.; Nock, J.F. The effects of ReTain, Harvista, and NAA on the quality of ‘Mcintosh’ apples. In Proceeding of the 2013 ASHS Annual Conference, Palm Desert, CA, USA, 22–25 July 2013. [Google Scholar]
- Doerflinger, F.C.; Sutanto, G.; Nock, J.F.; Shoffe, Y.A.; Zhang, Y.; Watkins, C.B. Stem-end flesh browning of ‘Gala’ apples is decreased by preharvest 1-MCP (Harvista) and conditioning treatments. Fruit Quar. 2017, 25, 9–14. [Google Scholar]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus and COVID-19 pandemic: A review. Int. J. Surg. 2020, 16. [Google Scholar] [CrossRef]
- Abu-Goukh, A.B. 1-Methylcyclopropene (1-MCP) a breakthrough to delay ripening and extend shelf-life of horticultural crops. Univ. Khartoum J. Agric. Sci. 2013, 21, 170–196. [Google Scholar]
Assessment | No preharvest 1-MCP Treatment | Preharvest 1-MCP Treatment | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
First preharvest | 69.2 ± 1.0 | 69.5 (67.8–70.0) | 69.8 ± 1.2 | 69.4 (68.9–71.4) | 0.4631 |
Second preharvest | 70.5 ± 2.2 | 70.2 (68.2–73.4) | 67.8 ± 2.3 | 67.8 (65.7–69.9) | 0.1368 |
Third preharvest | 66.5 ± 0.6 | 66.6 (65.7–67.2) | 67.2 ± 2.4 | 67.8 (63.8–69.2) | 0.6275 |
Fourth preharvest | 67.8 ± 2.3 | 67.0 (66.3–71.1) | 67.9 ± 0.8 | 67.8 (67.1–69.1) | 0.9363 |
Fifth preharvest | 63.4 ± 0.3 | 63.4 (63.0–63.8) | 65.9 ± 0.4 | 65.8 (65.5–66.4) | <0.0001 |
Harvesting in optimum harvesting window | |||||
First postharvest | 67.5 ± 2.7 | 67.3 * (64.4–71.0) | 69.4 ± 2.1 | 69.4 (67.5–71.2) | 0.0833 |
Second postharvest | 60.1 ± 3.8 | 61.4 (54.5–63.1) | 70.1 ± 1.7 | 70.3 (68.2–71.8) | 0.0029 |
Third postharvest | 62.5 ± 2.4 | 62.8 (59.4–65.2) | 70.4 ± 2.4 | 70.4 (67.6–73.4) | 0.0034 |
Delayed harvesting | |||||
First postharvest | 54.5 ± 1.0 | 54.5 (53.4–55.4) | 61.9 ± 1.4 | 61.5 (60.6–63.9) | 0.0001 |
Second postharvest | 56.6 ± 4.8 | 55.8 (51.7–63.3) | 61.9 ± 5.0 | 61.9 (57.2–66.5) | 0.1828 |
Third postharvest | 45.5 ± 4.4 | 45.1 (41.3–50.6) | 63.1 ± 0.6 | 63.4 (62.3–63.5) | 0.0002 |
Assessment | No preharvest 1-MCP Treatment | Preharvest 1-MCP Treatment | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
First preharvest | 12.8 ± 0.5 | 12.8 (12.2–13.4) | 12.9 ± 0.2 | 12.9 * (12.7–13.1) | 1.0000 |
Second preharvest | 13.7 ± 0.2 | 13.7 (13.4–13.9) | 13.4 ± 0.2 | 13.4 (13.2–13.6) | 0.0871 |
Third preharvest | 13.3 ± 0.3 | 13.3 (12.9–13.5) | 13.2 ± 0.3 | 13.1 (13.0–13.7) | 0.0293 |
Fourth preharvest | 13.6 ± 0.2 | 13.5 (13.4–13.8) | 13.1 ± 0.4 | 13.1 (12.7–13.5) | 0.0659 |
Fifth preharvest | 14.2 ± 0.3 | 14.1 (13.9–14.5) | 13.7 ± 0.4 | 13.8 * (13.2–14.1) | 0.1123 |
Harvesting in optimum harvesting window | |||||
First postharvest | 13.7 ± 0.4 | 13.6 (13.3–14.2) | 13.2 ± 1.1 | 13.1 (12.0–14.5) | 0.4447 |
Second postharvest | 12.9 ± 0.2 | 12.9 (12.6–13.1) | 12.9 ± 0.4 | 12.8 (12.6–13.5) | 0.9190 |
Third postharvest | 13.7 ± 1.0 | 13.6 (12.7–14.7) | 13.5 ± 0.6 | 13.5 (12.7–14.1) | 0.7437 |
Delayed harvesting | |||||
First postharvest | 13.2 ± 0.5 | 13.4 (12.5–13.7) | 13.6 ± 0.6 | 13.6 (12.9–14.2) | 0.3809 |
Second postharvest | 13.4 ± 0.5 | 13.2 (13.1–14.1) | 13.7 ± 0.2 | 13.7 * (13.5–14.0) | 0.2454 |
Third postharvest | 13.0 ± 0.5 | 13.0 (12.4–13.5) | 12.9 ± 0.3 | 12.8 (12.6–13.3) | 0.7985 |
Assessment | No preharvest 1-MCP Treatment | Preharvest 1-MCP Treatment | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
First preharvest | 0.608 ± 0.058 | 0.622 (0.528–0.663) | 0.616 ± 0.026 | 0.614 (0.591–0.644) | 0.8262 |
Second preharvest | 0.556 ± 0.009 | 0.552 (0.549–0.569) | 0.602 ± 0.025 | 0.595 (0.579–0.638) | 0.0133 |
Third preharvest | 0.581 ± 0.020 | 0.586 (0.555–0.596) | 0.642 ± 0.040 | 0.637 (0.607–0.688) | 0.0340 |
Fourth preharvest | 0.518 ± 0.054 | 0.507 (0.467–0.589) | 0.610 ± 0.017 | 0.611 (0.591–0.627) | 0.0170 |
Fifth preharvest | 0.568 ± 0.016 | 0.566 (0.552–0.590) | 0.555 ± 0.032 | 0.542 (0.534–0.603) | 0.4957 |
Harvesting in optimum harvesting window | |||||
First postharvest | 0.548 ± 0.033 | 0.539 (0.520–0.596) | 0.527 ± 0.061 | 0.542 (0.441–0.582) | 0.5616 |
Second postharvest | 0.465 ± 0.014 | 0.463 (0.451–0.483) | 0.485 ± 0.066 | 0.498 (0.395–0.549) | 0.5752 |
Third postharvest | 0.387 ± 0.019 | 0.392 (0.362–0.403) | 0.429 ± 0.012 | 0.432 (0.413–0.440) | 0.0100 |
Delayed harvesting | |||||
First postharvest | 0.400 ± 0.051 | 0.399 (0.353–0.450) | 0.477 ± 0.058 | 0.475 (0.416–0.541) | 0.0960 |
Second postharvest | 0.380 ± 0.053 | 0.397 (0.302–0.423) | 0.408 ± 0.017 | 0.411 (0.386–0.425) | 0.3426 |
Third postharvest | 0.283 ± 0.024 | 0.291 (0.248–0.301) | 0.372 ± 0.014 | 0.374 (0.354–0.387) | 0.0007 |
Assessment | No Preharvest 1-MCP Treatment | Preharvest 1-MCP Treatment | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
First preharvest | 0.165 ± 0.156 | 0.115 * (0.052–0.861) | 0.153 ± 0.161 | 0.105 * (0.050–0.842) | 0.1744 |
Second preharvest | 0.281 ± 0.444 | 0.109 * (0.061–2.030) | 0.236 ± 0.337 | 0.123 * (0.020–1.420) | 0.9440 |
Third preharvest | 0.138 ± 0.112 | 0.113 * (0.053–0.710) | 0.142 ± 0.046 | 0.135 (0.055–0.287) | 0.0431 |
Fourth preharvest | 1.563 ± 3.596 | 0.309 * (0.020–20.200) | 0.114 ± 0.155 | 0.063 * (0.010–0.898) | <0.0001 |
Fifth preharvest | 5.751 ± 12.343 | 0.710 * (0.051–68.400) | 0.759 ± 1.800 | 0.201 * (0.065–8.180) | <0.0001 |
Assessment | No preharvest 1-MCP Treatment | Preharvest 1-MCP Treatment | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
First preharvest | 6.9 ± 1.7 | 7 * (3–9) | 6.8 ± 1.8 | 7 * (4–9) | 0.8286 |
Second preharvest | 9.1 ± 1.3 | 9.5 * (5–10) | 9.1 ± 1.1 | 9 * (6–10) | 0.8367 |
Third preharvest | 9.5 ± 1.5 | 10 * (1–10) | 9.7 ± 0.6 | 10 * (8–10) | 0.9578 |
Fourth preharvest | 10 ± 0.0 | 10 * (10–10) | 9.4 ± 1.5 | 10 * (1–10) | 0.0146 |
Fifth preharvest | 10 ± 0.0 | 10 * (10–10) | 9.9 ± 0.3 | 10 * (9–10) | 0.5637 |
Assessment | No Preharvest 1-MCP Treatment | Preharvest 1-MCP Treatment | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
First preharvest | 0.079 ± 0.003 | 0.079 (0.076–0.082) | 0.080 ± 0.006 | 0.079 (0.075–0.088) | 0.6913 |
Second preharvest | 0.057 ± 0.004 | 0.058 (0.052–0.060) | 0.056 ± 0.002 | 0.056 (0.053–0.057) | 0.4939 |
Third preharvest | 0.053 ± 0.003 | 0.052 (0.050–0.058) | 0.052 ± 0.002 | 0.053 (0.050–0.054) | 0.8103 |
Fourth preharvest | 0.050 ± 0.002 | 0.050 (0.048–0.053) | 0.055 ± 0.002 | 0.054 (0.053–0.059) | 0.0144 |
Fifth preharvest | 0.045 ± 0.001 | 0.045 (0.044–0.046) | 0.048 ± 0.001 | 0.048 (0.047–0.050) | 0.0140 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomala, K.; Grzęda, M.; Guzek, D.; Głąbska, D.; Gutkowska, K. Analysis of Possibility to Apply Preharvest 1-Methylcyclopropene (1-MCP) Treatment to Delay Harvesting of Red Jonaprince Apples. Sustainability 2020, 12, 4575. https://doi.org/10.3390/su12114575
Tomala K, Grzęda M, Guzek D, Głąbska D, Gutkowska K. Analysis of Possibility to Apply Preharvest 1-Methylcyclopropene (1-MCP) Treatment to Delay Harvesting of Red Jonaprince Apples. Sustainability. 2020; 12(11):4575. https://doi.org/10.3390/su12114575
Chicago/Turabian StyleTomala, Kazimierz, Marek Grzęda, Dominika Guzek, Dominika Głąbska, and Krystyna Gutkowska. 2020. "Analysis of Possibility to Apply Preharvest 1-Methylcyclopropene (1-MCP) Treatment to Delay Harvesting of Red Jonaprince Apples" Sustainability 12, no. 11: 4575. https://doi.org/10.3390/su12114575
APA StyleTomala, K., Grzęda, M., Guzek, D., Głąbska, D., & Gutkowska, K. (2020). Analysis of Possibility to Apply Preharvest 1-Methylcyclopropene (1-MCP) Treatment to Delay Harvesting of Red Jonaprince Apples. Sustainability, 12(11), 4575. https://doi.org/10.3390/su12114575