Next Article in Journal
Trojan Microparticles for Drug Delivery
Previous Article in Journal
Ionic Channels as Targets for Drug Design: A Review on Computational Methods
Article Menu

Export Article

Open AccessArticle
Pharmaceutics 2011, 3(4), 954-970; doi:10.3390/pharmaceutics3040954

Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine

División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1° de Mayo S/N, Cuautitlán Izcalli, Estado de México, 54740, Mexico
Authors to whom correspondence should be addressed.
Received: 29 September 2011 / Revised: 3 December 2011 / Accepted: 6 December 2011 / Published: 15 December 2011
View Full-Text   |   Download PDF [1134 KB, uploaded 15 December 2011]   |  


The objective of the current study was to formulate ketorolac tromethamine-loaded elastic liposomes and evaluate their in vitro drug release and their ex vivo and in vivo transdermal delivery. Ketorolac tromethamine (KT), which is a potent analgesic, was formulated in elastic liposomes using Tween 80 as an edge activator. The elastic vesicles were prepared by film hydration after optimizing the sonication time and number of extrusions. The vesicles exhibited an entrapment efficiency of 73 ± 11%, vesicle size of 127.8 ± 3.4 nm and a zeta potential of −12 mV. In vitro drug release was analyzed from liposomes and an aqueous solution, using Franz diffusion cells and a cellophane dialysis membrane with molecular weight cut-off of 8000 Da. Ex vivo permeation of KT across pig ear skin was studied using a Franz diffusion cell, with phosphate buffer (pH 7.4) at 32 °C as receptor solution. An in vivo drug permeation study was conducted on healthy human volunteers using a tape-stripping technique. The in vitro results showed (i) a delayed release when KT was included in elastic liposomes, compared to an aqueous solution of the drug; (ii) a flux of 0.278 mg/cm2h and a lag time of about 10 h for ex vivo permeation studies, which may indicate that KT remains in the skin (with the possibility of exerting a local effect) before reaching the receptor medium; (iii) a good correlation between the total amount permeated, the penetration distance (both determined by tape stripping) and transepidermal water loss (TEWL) measured during the in vivo permeation studies. Elastic liposomes have the potential to transport the drug through the skin, keep their size and drug charge, and release the drug into deep skin layers. Therefore, elastic liposomes hold promise for the effective topical delivery of KT. View Full-Text
Keywords: elastic liposomes; ketorolac tromethamine; skin permeation; tape stripping; TEWL elastic liposomes; ketorolac tromethamine; skin permeation; tape stripping; TEWL

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Nava, G.; Piñón, E.; Mendoza, L.; Mendoza, N.; Quintanar, D.; Ganem, A. Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine. Pharmaceutics 2011, 3, 954-970.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Pharmaceutics EISSN 1999-4923 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top