Watersheds and Trees Fall Together: An Analysis of Intact Forested Watersheds in Southern Patagonia (41–56° S)
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Watershed Delineation
2.3. Forest Mapping, Processing and Overlay with Watersheds at the Regional Scale
2.4. Validation of Primary Forest and IFWs at the Basin Scale
2.5. Combined Metric for IFW Conservation Priorities
3. Results
3.1. Regional Analysis of Mature Forested Watersheds (Chile)—Geographic and Bioclimatic Distribution
3.2. Validation Sites—Revised IFW Status for Three Large Continental Basins
3.3. Prioritizing IFW Conservation—Example of Combined Metric Approach from the Aysén Basin
4. Discussion
4.1. Maximum and Minimum Estimates of IFWs in Patagonia
4.2. pIFW vs. IFW: Conservation Value and Management within the Intermediate Zone
4.3. Valuation of IFWs as a Trade off among Conservation Objectives
4.4. Implications for Landscape Conservation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morales-Hidalgo, D.; Oswalt, S.N.; Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the global forest resources assessment 2015. For. Ecol. Manag. 2015, 352, 68–77. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Mackey, B.; DellaSala, D.A.; Kormos, C.; Lindenmayer, D.; Kumpel, N.; Zimmerman, B.; Hugh, S.; Young, V.; Foley, S.; Arsenis, K. Policy options for the world’s primary forests in multilateral environmental agreements. Conserv. Lett. 2015, 8, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.; Tyukavina, A.; Thau, D.; Stehman, S.; Goetz, S.; Loveland, T. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Potapov, P.; Hansen, M.C.; Laestadius, L.; Turubanova, S.; Yaroshenko, A.; Thies, C.; Smith, W.; Zhuravleva, I.; Komarova, A.; Minnemeyer, S. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 2017, 3, e1600821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D. Habitat fragmentation and its lasting impact on earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The human footprint and the last of the wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 2016, 3, 160067. [Google Scholar] [CrossRef] [PubMed]
- WRI. Atlas of Forest and Landscape Restoration Opportunities. Available online: http://www.wri.org/resources/maps/atlas-forest-and-landscape-restoration-opportunities (accessed on 13 November 2017).
- Luyssaert, S.; Schulze, E.-D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Vertessy, R.A.; Watson, F.G.; Sharon, K. Factors determining relations between stand age and catchment water balance in mountain ash forests. For. Ecol. Manag. 2001, 143, 13–26. [Google Scholar] [CrossRef]
- Brookhuis, B.; Hein, L. The value of the flood control service of tropical forests: A case study for trinidad. For. Policy Econ. 2016, 62, 118–124. [Google Scholar] [CrossRef]
- D’Odorico, P.; Laio, F.; Porporato, A.; Ridolfi, L.; Rinaldo, A.; Rodriguez-Iturbe, I. Ecohydrology of terrestrial ecosystems. BioScience 2010, 60, 898–907. [Google Scholar] [CrossRef]
- Saunders, D.; Meeuwig, J.; Vincent, A. Freshwater protected areas: Strategies for conservation. Conserv. Biol. 2002, 16, 30–41. [Google Scholar] [CrossRef]
- Lowe, W.H.; Likens, G.E. Moving headwater streams to the head of the class. BioScience 2005, 55, 196–197. [Google Scholar] [CrossRef]
- Keeton, W.S.; Kraft, C.E.; Warren, D.R. Mature and old-growth riparian forests: Structure, dynamics, and effects on adirondack stream habitats. Ecol. Appl. 2007, 17, 852–868. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.R.; Kraft, C.E.; Keeton, W.S.; Nunery, J.S.; Likens, G.E. Dynamics of wood recruitment in streams of the northeastern us. For. Ecol. Manag. 2009, 258, 804–813. [Google Scholar] [CrossRef]
- Bond, B.J.; Meinzer, F.C.; Brooks, J.R. How trees influence the hydrological cycle in forest ecosystems. In Hydroecology and Ecohydrology: Past, Present and Future; Wood, P., Hannah, D., Sadler, J., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 7–35. [Google Scholar]
- Veblen, T.; Donoso, C.; Kitzberger, T.; Rebertus, A. Ecology of southern chilean and argentinean nothofagus forests. In The Ecology and Biogeography of Nothofagus Forests; Veblen, T., Hill, R., Read, J., Eds.; Yale University Press: New Haven, CT, USA, 1996; pp. 293–353. [Google Scholar]
- Armesto, J.J.; Smith-Ramírez, C.; Carmona, M.R.; Celis-Diez, J.L.; Díaz, I.A.; Gaxiola, A.; Gutiérrez, A.G.; Núnez-Avila, M.C.; Pérez, C.A.; Rozzi, R. Old-growth temperate rainforests of south america: Conservation, plant–animal interactions, and baseline biogeochemical processes. In Old-Growth Forests, Ecological Studies (Analysis and Synthesis); Wirth, C., Gleixner, G., Heimann, M., Eds.; Springer: Berlin, Germany, 2009; pp. 367–390. [Google Scholar]
- Villagrán, C.; Hinojosa, L.F. Historia de los bosques del sur de sudamérica, ii: Análisis fitogeográfico. Revista Chilena de Historia Natural 1997, 70, 1–267. [Google Scholar]
- Armesto, J.J.; Rozzi, R.; Smith-Ramirez, C.; Arroyo, M. Conservation Targets in South American Temperate Forests; American Association for the Advancement of Science: Washington, DC, USA, 1998. [Google Scholar]
- Dentener, F. Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993, and 2050. Available online: http://daac.ornl.gov/ (accessed on 12 November 2017).
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Crain, B.J.; Tremblay, R.L. Do richness and rarity hotspots really matter for orchid conservation in light of anticipated habitat loss? Divers. Distrib. 2014, 20, 652–662. [Google Scholar] [CrossRef] [Green Version]
- Kareiva, P.; Marvier, M. Conserving biodiversity coldspots: Recent calls to direct conservation funding to the world’s biodiversity hotspots may be bad investment advice. Am. Sci. 2003, 91, 344–351. [Google Scholar] [CrossRef]
- Kohlmann, B.; Roderus, D.; Elle, O.; Solís, Á.; Soto, X.; Russo, R. Biodiversity conservation in Costa Rica: A correspondence analysis between identified biodiversity hotspots (araceae, arecaceae, bromeliaceae, and scarabaeinae) and conservation priority life zones. Rev. Mex. Biodivers. 2010, 81, 511–559. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled Srtm for the Globe Version 4 Available From the CGIAR-CSI SRTM 90m Database. Available online: http://srtm.csi.cgiar.org (accessed on 4 October 2017).
- CONAF. Catastro de Uso de Suelo y Vegetación. Available online: http://www.ide.cl/descarga/capas/item/catastros-de-uso-de-suelo-y-vegetacion.html (accessed on 2 October 2017).
- IGN. Cobertura del Suelo. Available online: http://www.ign.gob.ar/NuestrasActividades/InformacionGeoespacial/CapasSIG (accessed on 2 October 2017).
- INE. Censo 2017. Available online: http://www.censo2017.cl/descargue-aqui-resultados-de-comunas/ (accessed on 1 April 2018).
- CONAF. Catastro de los Recursos Vegetacionales Nativos de Chile. Monitoreo de Cambios y Actualizaciones. Periodo 1997–2011; Ministerio de Agricultura: Santiago, Chile, 2011.
- CONAF; CONAMA; BIRF; Universidad Austral de Chile; Pontificia Universidad Católica de Chile; Universidad Católica de Temuco. Proyecto Catastro y Evaluación de los Recursos Vegetacionales Nativos de Chile; Ministerio de Agricultura: Santiago, Chile, 1999.
- ESRI. Arc Hydro Tools Overview; ESRI Water Resources Team, Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Ministerio de Obras Públicas (MOP). Balance Hídrico de Chile; Dirección General de Aguas: Santiago, Chile, 1987.
- Ministerio de Bienes Nacionales (BBNN). Bienes Nacionales Protegidos. Available online: http://www.ide.cl/descarga/capas/item/bienes-nacionales-protegidos.html (accessed on 2 October 2017).
- SIB. Sistema de Información de Biodiversidad y Administración de Parques Nacionales. Available online: https://mapas.parquesnacionales.gob.ar/layers/geonode%3Aapn_areasprotegidas_01 (accessed on 15 February 2018).
- Holz, A.; Veblen, T.T. Wildfire activity in rainforests in western patagonia linked to the southern annular mode. Int. J. Wildland Fire 2012, 21, 114–126. [Google Scholar] [CrossRef]
- Arroyo, M. Los bosques de lenga de chile ¿ qué debemos hacer para asegurar su adecuada preservación y uso sustentable. In La Tragedia del Bosque Chileno; del Bosque Chileno, D., Ed.; Ocho Libros Editores: Santiago, Chile, 1998; pp. 110–116. [Google Scholar]
- Bizama, G.; Torrejón, F.; Aguayo, M.; Muñoz, M.D.; Echeverría, C.; Urrutia, R. Pérdida y fragmentación del bosque nativo en la cuenca del río aysén (patagonia-chile) durante el siglo xx. Revista de Geografía Norte Grande 2011, 125–138. [Google Scholar] [CrossRef]
- Myers, N. Biodiversity hotspots revisited. BioScience 2003, 53, 916–917. [Google Scholar]
- Reyers, B.; O’Farrell, P.J.; Cowling, R.M.; Egoh, B.N.; Le Maitre, D.C.; Vlok, J.H. Ecosystem services, land-cover change, and stakeholders: Finding a sustainable foothold for a semiarid biodiversity hotspot. Ecol. Soc. 2009, 1, 38. [Google Scholar] [CrossRef]
- Harris, N.L.; Goldman, E.; Gabris, C.; Nordling, J.; Minnemeyer, S.; Ansari, S.; Lippmann, M.; Bennett, L.; Raad, M.; Hansen, M. Using spatial statistics to identify emerging hot spots of forest loss. Environ. Res. Lett. 2017, 12, 024012. [Google Scholar] [CrossRef] [Green Version]
- Di Minin, E.; Hunter, L.T.; Balme, G.A.; Smith, R.J.; Goodman, P.S.; Slotow, R. Creating larger and better connected protected areas enhances the persistence of big game species in the maputaland-pondoland-albany biodiversity hotspot. PLoS ONE 2013, 8, e71788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, L.; Yan, J.; Wang, P.; Hu, N.; Cheng, W.; Fu, B. Mapping the hotspots and coldspots of ecosystem services in conservation priority setting. J. Geogr. Sci. 2017, 27, 681–696. [Google Scholar] [CrossRef]
- Mac-Clure, R. La Sobrevivencia de Chile, la Conservación de sus Recursos Renovables, 2nd ed.; Ministerio de Agricultura: Santiago, Chile, 1970. [Google Scholar]
- Gallo, G.S. Las economías silenciosas del litoral aisenino. In Tres Miradas antrOpológicas a la Región de Aysén; Mauricio, O., Gonzalo, S.G., Héctor, V.M., Eds.; Ñirre Negro: Coyhaique, Chile, 2007. [Google Scholar]
- Astorga, E. Istmo de Ofqui: Un Proceso Inconcluso de la Conectividad en la Región de Aysén; Ñirre Negro: Coyhaique, Chile, 2016. [Google Scholar]
- Gutiérrez, A.G.; Armesto, J.J.; Aravena, J.-C.; Carmona, M.; Carrasco, N.V.; Christie, D.A.; Peña, M.-P.; Pérez, C.; Huth, A. Structural and environmental characterization of old-growth temperate rainforests of northern chiloe island, chile: Regional and global relevance. For. Ecol. Manag. 2009, 258, 376–388. [Google Scholar] [CrossRef]
- Bryant, D.; Nielsen, D.; Tangley, L. The Last Frontier Forests—Ecosystems Economies on the Edge; World Resources Institute (WRI): Washington, DC, USA, 1997. [Google Scholar]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef]
- Dörner, J.; Dec, D.; Peng, X.; Horn, R. Change of shrinkage behavior of an andisol in southern chile: Effects of land use and wetting/drying cycles. Soil Tillage Res. 2009, 106, 45–53. [Google Scholar] [CrossRef]
- Anderson, C.B.; Pastur, G.; Lencinas, M.V.; Wallem, P.K.; Moorman, M.C.; Rosemond, A.D. Do introduced north american beavers castor canadensis engineer differently in southern south america? An overview with implications for restoration. Mammal Rev. 2009, 39, 33–52. [Google Scholar] [CrossRef]
- Luebert, F.; Pliscoff, P. Sinopsis Bioclimática y Vegetacional de Chile; Editorial Universitaria: Santiago, Chile, 2006. [Google Scholar]
- Peredo-Parada, M.; Martinez-Capel, F.; Quevedo, D.I.; Hernandez-Mascarell, A.B. Implementation of an eco-hydrological classification in chilean rivers/implementación de una clasificación eco-hidrológica para los ríos de chile. Gayana 2011, 75, 26–38. [Google Scholar] [CrossRef]
- Universidad de Chile. Clasificación de Cuerpos de Aguas, Reporte Final; Comisión Nacional de Medioambiente: Santiago, Chile, 2010. [Google Scholar]
- Urciuolo, A.; Iturraspe, R.; Lofiego, R.; Noir, G. Estrategias para el ordenamiento hidro-ambiental de la cuenca binacional del río grande de tierra del fuego. In Proceedings of the XXII Congreso Nacional del Agua, Trelew, Argentina, 11–14 November 2009. [Google Scholar]
- Abell, R.; Thieme, M.L.; Revenga, C.; Bryer, M.; Kottelat, M.; Bogutskaya, N.; Coad, B.; Mandrak, N.; Balderas, S.C.; Bussing, W. Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience 2008, 58, 403–414. [Google Scholar] [CrossRef]
- Millenium Ecosystems Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Donoso, P.J.; Frêne, C.; Flores, M.; Moorman, M.C.; Oyarzún, C.E.; Zavaleta, J.C. Balancing water supply and old-growth forest conservation in the lowlands of south-central chile through adaptive co-management. Landsc. Ecol. 2014, 29, 245–260. [Google Scholar] [CrossRef]
- Reeves, G.H.; Williams, J.E.; Burnett, K.M.; Gallo, K. The aquatic conservation strategy of the northwest forest plan. Conserv. Biol. 2006, 20, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Lowe, W.H.; Likens, G.E.; Power, M.E. Linking scales in stream ecology. BioScience 2006, 56, 591–597. [Google Scholar] [CrossRef]
- Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B. Water quality functions of riparian forest buffers in chesapeake bay watersheds. Environ. Manag. 1997, 21, 687–712. [Google Scholar] [CrossRef]
- Martyniuk, N.; Modenutti, B.; Balseiro, E. Forest structure affects the stoichiometry of periphyton primary producers in mountain streams of northern patagonia. Ecosystems 2016, 19, 1225–1239. [Google Scholar] [CrossRef]
- Peterson, E.E.; Sheldon, F.; Darnell, R.; Bunn, S.E.; Harch, B.D. A comparison of spatially explicit landscape representation methods and their relationship to stream condition. Fresh. Biol. 2011, 56, 590–610. [Google Scholar] [CrossRef]
- Gribovszki, Z.; Szilágyi, J.; Kalicz, P. Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation—A review. J. Hydrol. 2010, 385, 371–383. [Google Scholar] [CrossRef]
- Nimick, D.A.; Gammons, C.H.; Parker, S.R. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review. Chem. Geol. 2011, 283, 3–17. [Google Scholar] [CrossRef]
- Contador, T.; Kennedy, J.H.; Rozzi, R.; Villarroel, J.O. Sharp altitudinal gradients in magellanic sub-antarctic streams: Patterns along a fluvial system in the cape horn biosphere reserve (55 s). Pol. Biol. 2015, 38, 1853–1866. [Google Scholar] [CrossRef]
- Fisher, S.G.; Gray, L.J.; Grimm, N.B.; Busch, D.E. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. 1982, 52, 93–110. [Google Scholar] [CrossRef]
General Characteristics | Region | R. Yelcho | R. Aysén | R. Serrano |
---|---|---|---|---|
Latitude range (°S) | 40.73–55.91 | 42.29–43.64 | 44.8–46.14 | 50.59–51.60 |
Total study area (km2) | 317,340 | 11,331 | 12,296 | 7858 |
Precipitation range (mm/year) 1 | 136–6829 | 241–1885 | 394–2437 | 227–1647 |
Mean annual temperature (°C) 1 | −10.3–12.2 | 0.0–11.2 | −0.1–9.5 | −4.9–7.6 |
Elevation range (m.a.s.l.) 2 | 0–3985 | 0–2534 | 0–2252 | 0–2680 |
Forest cover (km2) 3,4 | 129,618 | 6202 | 5538 | 1303 |
Land conversion (km2) 3,4 | 5241 | 120 | 1308 | 263 |
Population density (km−2) 5 | 1.9 | 4.1 | 6.7 | 0.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astorga, A.; Moreno, P.C.; Reid, B. Watersheds and Trees Fall Together: An Analysis of Intact Forested Watersheds in Southern Patagonia (41–56° S). Forests 2018, 9, 385. https://doi.org/10.3390/f9070385
Astorga A, Moreno PC, Reid B. Watersheds and Trees Fall Together: An Analysis of Intact Forested Watersheds in Southern Patagonia (41–56° S). Forests. 2018; 9(7):385. https://doi.org/10.3390/f9070385
Chicago/Turabian StyleAstorga, Anna, Paulo C. Moreno, and Brian Reid. 2018. "Watersheds and Trees Fall Together: An Analysis of Intact Forested Watersheds in Southern Patagonia (41–56° S)" Forests 9, no. 7: 385. https://doi.org/10.3390/f9070385
APA StyleAstorga, A., Moreno, P. C., & Reid, B. (2018). Watersheds and Trees Fall Together: An Analysis of Intact Forested Watersheds in Southern Patagonia (41–56° S). Forests, 9(7), 385. https://doi.org/10.3390/f9070385