Isolating and Quantifying the Effects of Climate and CO2 Changes (1980–2014) on the Net Primary Productivity in Arid and Semiarid China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Arid Ecological Model (AEM)
2.3. Model Validation
2.4. Model Input Data for the Arid and Semiarid (ASA)-China Simulation
2.5. Numeric Experiments Design and Factorial Analysis
TEMP effect = NPP1997–2014_TEMP − NPP1980–1997_TEMP
CLIM effects = NPP1997–2014_CLIM − NPP1980–1997_CLIM
OVERALL effects = NPP1997–2014_OVERALL − NPP1980–1997_OVERALL
TEMP ↔ PREC = CLIM effect − TEMP effect − PREC effect
CO2 ↔ CLIM = OVERALL effect − CLIM effect − CO2 effect
3. Results
3.1. Model Validation/Evaluation
3.2. Spatiotemporal Patterns of Climate Change in Arid and Semiarid Areas of China from 1980–2014
3.3. Impacts of Climate/CO2 Changes on Net Primary Productivity (NPP)
4. Discussion
5. Conclusions
Acknowledgements
Author Contributions
Conflict of Interest
References
- Gray, V. Climate change 2007: The physical science basis. Summary for policy makers. Energy Environ. 2007, 54, 44–45. [Google Scholar]
- Shen, W.; Reynolds, J.F.; Hui, D. Responses of dryland soil respiration and soil carbon pool size to abrupt vs. Gradual and individual vs. Combined changes in soil temperature, precipitation, and atmospheric [CO2]: A simulation analysis. Glob. Chang. Biol. 2009, 15, 2274–2294. [Google Scholar] [CrossRef]
- Chen, F.-H.; Chen, J.-H.; Holmes, J.; Boomer, I.; Austin, P.; Gates, J.B.; Wang, N.-L.; Brooks, S.J.; Zhang, J.-W. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat. Sci. Rev. 2010, 29, 1055–1068. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, Y.; Li, D.; Zhang, G.; Ding, Y.; Hu, R.; Kang, E. Discussion on the present climate change from warm-dry to warm-wet in northwest china. Quat. Sci. 2003, 23, 152–164. [Google Scholar]
- Feng, Z.-D.; An, C.; Wang, H. Holocene climatic and environmental changes in the arid and semi-arid areas of China: A review. Holocene 2006, 16, 119–130. [Google Scholar] [CrossRef]
- Yang, X.; Williams, M. Landforms and processes in arid and semi-arid environments. Catena 2015, 134, 1–3. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Ma, Z. Analysis on the drought characteristics in the main arid regions in the world since recent hundred-odd years. Arid Zone Res. 2004, 21, 97–103. [Google Scholar]
- Wang, H.; Liu, G.; Li, Z.; Ye, X.; Wang, M.; Gong, L. Impacts of climate change on net primary productivity in arid and semiarid regions of China. Chin. Geogr. Sci. 2016, 26, 35–47. [Google Scholar] [CrossRef]
- Cramer, W.; Bondeau, A.; Woodward, F.I.; Prentice, I.C.; Betts, R.A.; Brovkin, V.; Cox, P.M.; Fisher, V.; Foley, J.A.; Friend, A.D. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Chang. Biol. 2001, 7, 357–373. [Google Scholar] [CrossRef]
- Cao, M.; Prince, S.D.; Li, K.; Tao, B.; SMALL, J.; Shao, X. Response of terrestrial carbon uptake to climate interannual variability in China. Glob. Chang. Biol. 2003, 9, 536–546. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Lu, L.; Li, X.; Veroustraete, F. Terrestrial net primary productivity and its spatial-temporal variability in western China. Acta Ecol. Sin. 2005, 25, 1026–1032. [Google Scholar]
- Wang, L.-J.; Niu, Z.; Kuang, D. An analysis of the terrestrial npp from 2002 to 2006 in China based on modis data. Remote Sens. Land Resour. 2010, 25, 113–116. [Google Scholar]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhen, L.I. Temporal spatial change of vegetation net primary productivity in the arid region of northwest china during 2001 and 2012. Chin. J. Ecol. 2015, 34, 3333–3340. [Google Scholar]
- Li, C.F.; Luo, G.P.; Li, J.L. Net primary productivity and actual evapotranspiration of central Asia in recent 20 years. Arid Land Geogr. 2012, 35, 919–927. [Google Scholar]
- John, A.G.; Scullion, J.; Ostle, N.; Levy, P.E.; Gwynn-Jones, D. Completing the FACE of elevated CO2 research. Environ. Int. 2014, 73, 252–258. [Google Scholar]
- Houghton, R.; Hackler, J. Sources and sinks of carbon from land-use change in China. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed]
- Bo, T.; Cao, M.K.; Li, K.R.; Gu, F.X.; Ji, J.J.; Mei, H.; Zhang, L.M. Spatial patterns of terrestrial net ecosystem productivity in China during 1981–2000. Sci. China 2007, 50, 745–753. [Google Scholar]
- Zhang, C.; Tian, H.; Pan, S.; Liu, M.; Lockaby, G.; Schilling, E.B.; Stanturf, J. Effects of forest regrowth and urbanization on ecosystem carbon storage in a rural-urban gradient in the southeastern United States. Ecosystems 2007, 11, 1211–1222. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Chen, X.; Luo, G.; Li, L.; Li, X.; Yan, Y.; Shao, H. A spatial-explicit dynamic vegetation model that couples carbon, water, and nitrogen processes for arid and semiarid ecosystems. J. Arid Land 2012, 5, 102–117. [Google Scholar] [CrossRef]
- Ren, W.; Tian, H.; Tao, B.; Huang, Y.; Pan, S. China’s crop productivity and soil carbon storage as influenced by multifactor global change. Glob. Chang. Biol. 2012, 18, 2945–2957. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Melillo, J.M.; Kicklighter, D.W.; Pan, S.; Liu, J.; Mcguire, A.D.; Iii, B.M. Regional carbon dynamics in monsoon asia and its implications for the global carbon cycle. Glob. Planet. Chang. 2003, 37, 201–217. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Luo, G.; Chen, X. Modeling plant structure and its impacts on carbon and water cycles of the central Asian arid ecosystem in the context of climate change. Ecol. Model. 2013, 267, 158–179. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, Q. Spatiotemporal variations of reference evapotranspiration in recent five decades in the arid land of Northwestern China. Hydrol. Process. 2014, 28, 6124–6134. [Google Scholar] [CrossRef]
- Lu, J.; Ji, J. A simulation and mechanism analysis of long-term variations at land surface over arid/semi-arid area in north China. J. Geophys. Res. Atmos. 2006, 111, 1513–1528. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Q.; Li, L. Long-term oscillation of drought conditions in the western China: An analysis of PDSI on a decadal scale. J. Arid Land 2016, 8, 819–831. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, S.; Yong, S.; Zhou, Z.; Wang, R. Vegetation Map of the People’S Republic of China (1: 1000000); Geological Publishing House: Beijing, China, 2007. [Google Scholar]
- Li, C.; Zhang, C.; Luo, G.; Chen, X. Modeling the carbon dynamics of the dryland ecosystems in Xinjiang, China from 1981 to 2007—The spatiotemporal patterns and climate controls. Ecol. Model. 2013, 267, 148–157. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Luo, G.; Chen, X.; Maisupova, B.; Madaminov, A.A.; Han, Q.; Djenbaev, B.M. Carbon stock and its responses to climate change in central Asia. Glob. Chang. Biol. 2015, 21, 1951–1967. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.V.; Caemmerer, S.V.; Berry, J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Collatz, G.J.; Ribas-Carbo, M.; Berry, J. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 1992, 19, 519–538. [Google Scholar]
- Sellers, P.; Randall, D.; Collatz, G.; Berry, J.; Field, C.; Dazlich, D.; Zhang, C.; Collelo, G.; Bounoua, L. A revised land surface parameterization (sib2) for atmospheric gcms. Part I: Model formulation. J. Clim. 1996, 9, 676–705. [Google Scholar] [CrossRef]
- Bonan, G.B. A Land Surface Model (Lsm Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and Users Guide; Technical Note; Climate and Global Dynamics Division; National Center for Atmospheric Research: Boulder, CO, USA, 1996. [Google Scholar]
- Friend, A.D. Parameterisation of a global daily weather generator for terrestrial ecosystem modelling. Ecol. Model. 1998, 109, 121–140. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Rykiel, E.J. Testing ecological models: The meaning of validation. Ecol. Model. 1996, 90, 229–244. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, F.; Xing-Min, M.U.; Rui, L.I. Effects of temperature and precipitation variation on vegetation net primary productivity in the northern and southern regions of the qinling mountains from 1960 to 2011. Acta Bot. Boreal.-Occident. Sin. 2012, 4, 185–217. [Google Scholar]
- ORNL DACC. Available online: http://daac.ornl.gov/ (accessed on 26 February 2017).
- Wu, Y.; Wang, X.; Qiaoyan, L.I.; Yan, S. Response of broad-leaved Korean pine forest productivity of mt.Changbai to climate change: An analysis based on biome-bgc modeling. Acta Sci. Nat. Univ. Pekin. 2014, 50, 577–586. [Google Scholar]
- Wang, Y. The Study of Soil Organic Carbon (N) Storage and Circulation Patterns in Ebinur Lake Wetland. Ph.D. Thesis, XinJiang University, XinJiang, China, 2015. [Google Scholar]
- Su, H. Analyzing and Simulating the Growth of Picea Schrenkiana Forests in Xinjiang under Global Climate Change. Ph.D. Thesis, The Chinese Academy of Sciences, Beijing, China, 2005. [Google Scholar]
- Pei, Z.Y.; Zhou, C.P.; Ouyang, H.; Yang, W.B. A carbon budget of alpine steppe area in the Tibetan Plateau. Geogr. Res. 2010, 29, 102–110. [Google Scholar]
- Ying, W.; Tao, X.W.; Tian-gang, L.; Chao, W. Spaial and temporal dynamic changes of net primary product based on modis vegetation index in Gannan grassland. Acta Pratacult. Sin. 2010, 19, 201–210. [Google Scholar]
- Walker, R.; Geisinger, D.; Johnson, D.; Ball, J. Elevated atmospheric CO2 and soil n fertility effects on growth, mycorrhizal colonization, and xylem water potential of juvenile ponderosa pine in a field soil. Plant Soil 1997, 195, 25–36. [Google Scholar] [CrossRef]
- Thomas, R.; Lewis, J.; Strain, B. Effects of leaf nutrient status on photosynthetic capacity in loblolly pine (Pinus taeda L.) seedlings grown in elevated atmospheric CO2. Tree Physiol. 1993, 14, 947–960. [Google Scholar] [CrossRef]
- Kaushal, P.; Guehl, J.; Aussenac, G. Differential growth response to atmospheric carbon dioxide enrichment in seedlings of Cedrus atlantica and Pinus nigra ssp. Laricio var. Corsicana. Can. J. For. Res. 1989, 19, 1351–1358. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Zhang, Y. Effect of long-term warming on growth and biomass allocation of abies faxoniana seedlings. Acta Ecol. Sin. 2010, 30, 5994–6000. [Google Scholar]
- Bazzaz, F.; Coleman, J.; Morse, S. Growth responses of seven major co-occurring tree species of the northeastern United States to elevated CO2. Can. J. For. Res. 1990, 20, 1479–1484. [Google Scholar] [CrossRef]
- Hui, Y.; Qian, W.; Jia, D.; Shouren, Z. Effects of precipitation and nitrogen addition on photosynthetically ecophysiological characteristics and biomass of four tree seedlings in Gutian mountain, Zhejiang province, China. Acta Ecol. Sin. 2013, 33, 4226–4236. [Google Scholar]
- Smith, S.; Strain, B.; Sharkey, T. Effects of CO2 enrichment on four great basin grasses. Funct. Ecol. 1987, 1, 139–143. [Google Scholar] [CrossRef]
- Hunt, R.; Hand, D.; Hannah, M.; Neal, A. Response to CO2 enrichment in 27 herbaceous species. Funct. Ecol. 1991, 5, 410–421. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, G. Response of stipa baicalensis to soil droughtstress at high CO2 concentration. J. Appl. Meteorol. Sci. 2003, 2, 252–256. [Google Scholar]
- Zhou, H.-K.; Zhou, X.-M.; Zhao, X.-Q. A preliminary study of the influence of simulated greenhouse effect on a kobresia humilis meadow. Acta Phytoecol. Sin. 2000, 5, 006. [Google Scholar]
- Gao, S. Effect of Warming and Nitrogen Addition on Structure and Function of Leymus Chinensis Community in Songnen Grassland; Northeast Normal University: Changchun, China, 2012. [Google Scholar]
- Li, Y.; Zhao, L.; Zhao, X.; Zhou, H. Effects of a 5-years mimic temperature increase to the structure and productivity of kobresia humilis meadow. Acta Agrestia Sin. 2003, 12, 236–239. [Google Scholar]
- Li, F.; Zeng, X.D.; Song, X.; Tian, D.X.; Shao, P.; Zhang, D.L. Impact of spin-up forcing on vegetation states simulated by a dynamic global vegetation model coupled with a land surface model. Adv. Atmos. Sci. 2011, 28, 775–788. [Google Scholar] [CrossRef]
- Wang, C.T.; Wang, Q.J.; Shen, Z.X.; Peng, H.C.; Hai ying, L.I. A preliminary study of the effect of simulated precipitation on an alpine kobresia humilis meadow. Acta Pratacult. Sci. 2003, 12, 25–29. [Google Scholar]
- Housman, D.C.; Naumburg, E.; Huxman, T.E.; Charlet, T.N.; Nowak, R.S.; Smith, S.D. Increases in desert shrub productivity under elevated carbon dioxide vary with water availability. Ecosystems 2006, 9, 374–385. [Google Scholar] [CrossRef]
- Polley, H.W.; Tischler, C.R.; Johnson, H.B. Elevated atmospheric CO2 magnifies intra-specific variation in seedling growth of honey mesquite: An assessment of relative growth rates. Rangel. Ecol. Manag. 2006, 59, 128–134. [Google Scholar] [CrossRef]
- Mauney, J.R.; Lewin, K.F.; Hendrey, G.R.; Kimball, B.A. Growth and yield of cotton exposed to free-air CO2 enrichment (face). Crit. Rev. Plant Sci. 1992, 11, 213–222. [Google Scholar]
- Kudo, G.; Suzuki, S. Warming effects on growth, production, and vegetation structure of alpine shrubs: A five-year experiment in northern Japan. Oecologia 2003, 135, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Zhang, X.; Zhao, J.; Wu, G. Response of seedlings of three dominant shrubs to climate warming to ordos plateau. Acta Bot. Sin. 2000, 43, 736–741. [Google Scholar]
- Zhu, Y.-J.; Jia, Z.-Y.; Wu, B.; Lu, Q.; Yao, B. The role of increased precipitation in promoting branch and leaf growth of nitraria tangutorum. For. Res. 2012, 5, 016. [Google Scholar]
- Chang, C.M. Moisture Factor Dynamics and Its Impact on Aboveground Biomass in Stipa Klemenzii Steppe; Inner Mongolia University: Inner Mongolia, China, 2014. [Google Scholar]
- Zhang, C.; Lu, D.; Chen, X.; Zhang, Y.; Maisupova, B.; Tao, Y. The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in central asia and their relationships with climate controls. Remote Sens. Environ. 2016, 175, 271–281. [Google Scholar] [CrossRef]
- Hou, S.; Lei, L.; Zeng, Z. The response of global net primary productivity (npp) to CO2 increasing and climate change: Evaluation of coupled model simulations. J. Food Agric. Environ. 2013, 11, 937–944. [Google Scholar]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Marco, A.; David, M.; Hurtt, G.C.; Moorcroft, P.R. The contribution of land-use change, CO2 fertilization and climate variability to the eastern US carbon sink. Glob. Chang. Biol. 2006, 12, 2370–2390. [Google Scholar]
- Groenigen, K.J.V.; Qi, X.; Osenberg, C.W.; Luo, Y.; Hungate, B.A. Faster Decomposition under Increased Atmospheric CO2 Limits Soil Carbon Storage. Science 2014, 344, 508–509. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, D.; Gao, J.; Deng, W. Land use/cover changes, the environment and water resources in northeast China. Environ. Manag. 2005, 36, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liu, Y. Climate warming and land use change in heilongjiang province, northeast China. Appl. Geogr. 2011, 31, 476–482. [Google Scholar] [CrossRef]
- Hu, Q.; Jiang, D.; Fan, G. Climate change projection on the tibetan plateau: Results of cmip5 models. Chin. J. Atmos. Sci. 2015, 39, 260–270. [Google Scholar]
- Jinghong, Y.; Xu, L. The soil and water conservation and the utilization of rainfall resources in Inner Mongolia. In Proceedings of the 12th ISCO Conference, Beinjing, China, 26–31 May 2002.
- Shi, Y. Characteristics of late quaternary monsoonal glaciation on the tibetan plateau and in east Asia. Quat. Int. 2002, 97, 79–91. [Google Scholar] [CrossRef]
- Naumburg, E.; Housman, D.C.; Huxman, T.E.; Charlet, T.N.; Loik, M.E.; Smith, S.D. Photosynthetic responses of mojave desert shrubs to free air CO2 enrichment are greatest during wet years. Glob. Chang. Biol. 2003, 9, 276–285. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Xu, G.; Zou, T. Ecophysiological response and morphological adjustment of two central asian desert shrubs towards variation in summer precipitation. Plant Cell Environ. 2007, 30, 399–409. [Google Scholar] [CrossRef] [PubMed]
Location | Longitude | Latitude | Dominant PFT | Year | NPP (g C/(m2·year)) | Methodology | Source |
---|---|---|---|---|---|---|---|
Tianshui | 105.75 | 34.58 | Broadleaf forest | 1960–2011 | 608.00 | Model estimated | Jiang et al. [40] |
Xilin Gole | 116.63 | 43.72 | Grassland | 1980–1989 | 248.63 | Field observations | [41] |
Changbai | 121.5 | 50.83 | Broadleaf forest | 1960–2014 | 594.66 | Model estimated | Wu et al. [42] |
Bole | 82.73 | 44.84 | Phreatophytic shrub | 1997–2006 | 422.73 | Field observations | Wang et al. [43] |
Zhaosu | 81.12 | 43.23 | Needleleaf forest | 1941–2002 | 529.50 | Field observations | Su et al. [44] |
Yiwu | 93.95 | 43.42 | Needleleaf forest | 1981–2001 | 188.50 | Field observations | Su et al. [44] |
Tianchi | 88.11 | 43.89 | Needleleaf forest | 1900–2000 | 539.00 | Field observations | Su et al. [44] |
Xiaoquzi | 87.11 | 43.48 | Needleleaf forest | 1929–2002 | 547.00 | Field observations | Su et al. [44] |
Bange | 89.98 | 31.67 | Alpine steppe | 2001 | 67.49 | Field observations | Pei et al. [45] |
Tianzhu | 102.43 | 37.2 | Grassland | 1980–1981 | 536.75 | MODIS-retrieved | Wang et al. [46] |
PFT | Validation Sites | Experiments Descriptions | Field-Observed Data | References |
---|---|---|---|---|
ENF | USDA Forest Service Institute of Forest Genetics (Placerville, CA, USA) | Ambient CO2: 352 ppm, Elevated CO2: 700 ppm | Biomass | Walker et al. [47] |
ENF | Piedmont Area in North Carolina | Ambient CO2: 350 ppm, Elevated CO2: 650 ppm. | Biomass | Thomas et al. [48] |
ENF | Southeastern France (Ventoux) | Ambient CO2: 350 ppm, Elevated CO2: 800 ppm. | Biomass | Kaushal et al. [49] |
ENF | 31°41′07″N, 103°53′58″E | Warming (2.2 ± 0.2 °C) | Biomass | Yang et al. [50] |
DBF | Harvard Forest, Petersham, Massachusetts | Ambient CO2: 400 ppm, Elevated CO2: 700 ppm. | Biomass | Bazzaz et al. [51] |
DBF | 29°10′19.4″N–29°17′41.4″N, 18°03′49.7″E–118°11′12.2″E | Precipitation enrichment: +30% | Biomass | Yan et al. [52] |
GRS | The Great Basin Desert of North America | Ambient CO2: 340 ppm, Elevated CO2: 680 ppm. | NPP | Smith et al. [53] |
GRS | IHR-Littlehampton, UK | Ambient CO2: 360 ppm, Elevated CO2: 720 ppm. | Biomass | Hunt et al. [54] |
GRS | Changling grassland ecological site, Heilongjiang, China | Ambient CO2: 350 ppm, Elevated CO2: 700 ppm. | Biomass | Gao [55] |
GRS | Haibei alpine meadow ecological research site, China | Warming: +1 °C | Biomass | Zhou et al. [56] |
GRS | 123°44′E–123°47′E, 44°40′N–44°44′N | Warming: +1.7 °C | Biomass | Gao et al. [57] |
GRS | 37°29′N–37°45′ N, 101°12′E–101°23′E | Warming: +(1.15–1.87) °C | Biomass | Li et al. [58] |
GRS | Fenghuo Mountainous research site, Tibet, China | Warming: +2 °C | Biomass | Li et al. [59] |
GRS | 37°29′N–37°45′N, 101°12′E–101°33′E | Precipitation enrichment: +20% | Biomass | Wang et al. [60] |
SRB | Nevada Desert FACE Facility at southern Nevada, USA | Ambient CO2: 380 ppm, Elevated CO2: 550 ppm. | NPP | Housman et al. [61] |
SRB | Southwestern United States | Ambient CO2: 390 ppm, Elevated CO2: 710 ppm. | Biomass | Polley et al. [62] |
SRB | The University of Arizona Maricopa Agricultural Center | Ambient CO2: 370 ppm, Elevated CO2: 550 ppm. | NPP | Mauney et al. [63] |
SRB | 43°33′N, 142°53′E | Warming: +1.5 °C | NPP | Kudo et al. [64] |
SRB | Institute of Botany, C.A.S 116°17′E, 39°57′N | Warming: +3 °C | Biomass | Xiao et al. [65] |
SRB | Dengkou, Inner Mongolia and Min Qin, Gansu, China | Warming: +50% | Biomass | Zhu et al. [66] |
SRB | 112°40′25″E, 42°46′52″N | Warming: +40% | Biomass | Chang [67] |
Scenario | Climate Factors | CO2 | Scenario Description | ||
---|---|---|---|---|---|
Precipitation | Temperature a | Other a | |||
OVERALL | 1980–2014 | 1980–2014 | 1980–2014 | 1980–2014 | Combined effects |
CO2 | Equilibrium b | Equilibrium | Equilibrium | 1980–2014 | CO2 fertilization effect |
CLIM | 1980–2014 | 1980–2014 | 1980–2014 | 1980 | Climate effects |
PREC | 1980–2014 | Equilibrium | Equilibrium | 1980 | Precipitation effect |
TEMP | Equilibrium | 1980–2014 | Equilibrium | 1980 | Temperature effect |
Effects | Equations | Data | Results |
---|---|---|---|
OVERALL | NPP1997–2014_OVERALL − NPP1980–1997_OVERALL | 302.24–299.1 | 3.14 |
CO2 | NPP1997–2014_CO2 − NPP1980–1997_CO2 | 300.05–285.19 | 14.86 |
PREC | NPP1997–2014_PREC − NPP1980–1997_PREC | 278.18–289.1 | −10.92 |
TEMP | NPP1997–2014_TEMP − NPP1980–1997_TEMP | 296.64–296.22 | 0.42 |
CLIM | NPP1997–2014_CLIM − NPP1980–1997_CLIM | 282.13–292.48 | −10.35 |
TEMP ↔ PREC | CLIM effect − TEMP effect − PREC effect | −10.35–0.42–(−10.92) | 0.15 |
CO2 ↔ CLIM | OVERALL effect − CLIM effect − CO2 effect | 3.14–(−10.35)–14.86 | −1.37 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Zhang, C.; Wang, Q.; Chen, X.; Ding, J.; Karamage, F. Isolating and Quantifying the Effects of Climate and CO2 Changes (1980–2014) on the Net Primary Productivity in Arid and Semiarid China. Forests 2017, 8, 60. https://doi.org/10.3390/f8030060
Fang X, Zhang C, Wang Q, Chen X, Ding J, Karamage F. Isolating and Quantifying the Effects of Climate and CO2 Changes (1980–2014) on the Net Primary Productivity in Arid and Semiarid China. Forests. 2017; 8(3):60. https://doi.org/10.3390/f8030060
Chicago/Turabian StyleFang, Xia, Chi Zhang, Quan Wang, Xi Chen, Jianli Ding, and Fidele Karamage. 2017. "Isolating and Quantifying the Effects of Climate and CO2 Changes (1980–2014) on the Net Primary Productivity in Arid and Semiarid China" Forests 8, no. 3: 60. https://doi.org/10.3390/f8030060
APA StyleFang, X., Zhang, C., Wang, Q., Chen, X., Ding, J., & Karamage, F. (2017). Isolating and Quantifying the Effects of Climate and CO2 Changes (1980–2014) on the Net Primary Productivity in Arid and Semiarid China. Forests, 8(3), 60. https://doi.org/10.3390/f8030060