Next Article in Journal
Ponderosa Pine Forest Restoration Treatment Longevity: Implications of Regeneration on Fire Hazard
Previous Article in Journal
Correction: Trishkin, M., et al. Assessment of a Company’s Due Diligence System against the EU Timber Regulation: A Case Study from Northwestern Russia. Forests 2015, 6, 1380–1396
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Forests 2016, 7(7), 135; doi:10.3390/f7070135

Wood Density and Mechanical Properties of Pinus kesiya Royle ex Gordon in Malawi

1
Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
2
Department of Forestry, Malawi College of Forestry and Wildlife, Private Bag 6, Dedza, Malawi
3
Laboratory of Wood Science, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
*
Author to whom correspondence should be addressed.
Academic Editors: Sune Linder and Eric Jokela
Received: 24 May 2016 / Revised: 21 June 2016 / Accepted: 1 July 2016 / Published: 7 July 2016
View Full-Text   |   Download PDF [6630 KB, uploaded 7 July 2016]   |  

Abstract

Successful development of an appropriate tree breeding strategy and wood utilization requires information on wood properties. This study was therefore conducted to assess wood density and mechanical properties of Pinus kesiya Royle ex Gordon grown in Malawi. Wood samples from six families of P. kesiya at the age of 30 years were used for the study. The estimated mean wood density, Modulus of Elasticity (MoE), Modulus of Rupture (MoR) and moisture content were 0.593 ± 0.001 g/cm3, 13.46 ± 0.07 GPa, 113.67 ± 0.57 MPa and 12.08% ± 0.03%, respectively. There were statistically significant (p < 0.001) differences in wood density and mechanical properties along the radial direction and stem height. Wood density and mechanical properties increased from pith to bark and decreased from the butt upwards. There were no significant (p > 0.05) differences in wood density and mechanical properties among the families. This is an indication that any tree among the families can be selected for tree improvement programs if density is considered as a variable. Wood density had a strong positive significant linear relationship with both MoE (r = 0.790; p < 0.001) and MoR (r = 0.793; p < 0.001). This suggests that it has the potential to simultaneously improve the wood density and mechanical properties of this species. Therefore, controlling wood density for the tree improvement program of P. kesiya in Malawi would have a positive impact on mechanical properties. View Full-Text
Keywords: Pinus kesiya; modulus of elasticity; modulus of rupture; wood density; tree improvement Pinus kesiya; modulus of elasticity; modulus of rupture; wood density; tree improvement
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Missanjo, E.; Matsumura, J. Wood Density and Mechanical Properties of Pinus kesiya Royle ex Gordon in Malawi. Forests 2016, 7, 135.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top