Next Article in Journal
Correction: Homyack, J.A. and Kroll, A.J. Slow Lives in the Fast Landscape: Conservation and Management of Plethodontid Salamanders in Production Forests of the United States. Forests 2014, 5, 2750–2772
Previous Article in Journal
Effects of Buffering Key Habitat for Terrestrial Salamanders: Implications for the Management of the Federally Threatened Red Hills Salamander (Phaeognathus hubrichti) and Other Imperiled Plethodontids
Article Menu

Export Article

Open AccessArticle
Forests 2015, 6(3), 839-857; doi:10.3390/f6030839

Gene Expression Differences between High-Growth Populus Allotriploids and Their Diploid Parents

1
National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
2
Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
3
College of Forestry and Horticulture, Xinjiang Agricultural University, No. 311, East Nongda Road, Urumqi 830052, China
*
Author to whom correspondence should be addressed.
Academic Editors: C. Dana Nelson and Eric J. Jokela
Received: 17 October 2014 / Revised: 10 February 2015 / Accepted: 12 March 2015 / Published: 23 March 2015
View Full-Text   |   Download PDF [1289 KB, uploaded 23 March 2015]   |  

Abstract

Polyploid breeding is important in Populus genetic improvement programs because polyploid trees generally display increased height growth compared to their diploid parents. However, the genetic mechanism underlying this phenomenon remains unknown. In the present study, apical bud transcriptomes of vigorous, fast growing Populus allotriploid progeny genotypes and their diploid parents were sequenced and analyzed. We found that these allotriploids exhibited extensive transcriptomic diversity. In total, 6020 differentially expressed genes (DEGs) were found when the allotriploid progeny and their parents were compared, among which 791 overlapped between the allotriploids and both parents. Many genes associated with cell differentiation and meristem development were preferentially expressed in apical buds of the fast growing Populus allotriploids compared to their diploid parents. In addition, many auxin-, gibberellin-, and jasmonic acid-related genes were also preferentially expressed in the allotriploids compared to their parents. Our findings show that allotriploidy can have considerable effects on duplicate gene expression in Populus. In particular we identified and considered DEGs that provide important clues for improving our mechanistic understanding of positive heterosis of vigor- and growth-related traits in Populus allotriploids. View Full-Text
Keywords: Populus section Tacamahaca; allotriploid; apical bud; vigor and height growth traits; RNA-seq Populus section Tacamahaca; allotriploid; apical bud; vigor and height growth traits; RNA-seq
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Cheng, S.; Zhu, X.; Liao, T.; Li, Y.; Yao, P.; Suo, Y.; Zhang, P.; Wang, J.; Kang, X. Gene Expression Differences between High-Growth Populus Allotriploids and Their Diploid Parents. Forests 2015, 6, 839-857.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top