Forests 2011, 2(3), 637-659; doi:10.3390/f2030637
Article

Leaf Area Index, Biomass Carbon and Growth Rate of Radiata Pine Genetic Types and Relationships with LiDAR

1,* email, 2email, 1email, 1email, 1email and 2email
Received: 19 May 2011; in revised form: 1 August 2011 / Accepted: 3 August 2011 / Published: 16 August 2011
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and south-facing aspects. Modelled carbon was highly correlated with directly measured crown, stem, and above ground biomass data, with r = 0.92, 0.97 and 0.98, respectively. LiDAR canopy percentile height (P30) and cover, based on all returns above 0.5 m, explained 81, 88, and 93% of the variation in directly measured crown, stem, and above ground live carbon and 75, 89 and 88% of the modelled carbon, respectively. LAI (all surfaces) ranged between 8.8–19.1 in the 10 plots measured at age 9 years. The difference in canopy percentile heights (P95–P30) and cover based on first returns explained 80% of the variation in total LAI. Periodic mean annual increments in stem volume, above ground live carbon, and total carbon between ages 9 and 13 years were significantly related to (P95–P30), with regression models explaining 56, 58, and 55%, respectively, of the variation in growth rate per plot. When plot aspect and genetic type were included with (P95–P30), the R2 of the regression models for stem volume, above ground live carbon, and total carbon increment increased to 90, 88, and 88%, respectively, which indicates that LiDAR regression equations for estimating stock changes can be substantially improved by incorporating supplementary site and crop data.
Keywords: carbon stock; forest carbon sink; sequestration; Kyoto Protocol; LiDAR; aspect; genetic improvement
PDF Full-text Download PDF Full-Text [1037 KB, uploaded 16 August 2011 10:50 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Beets, P.N.; Reutebuch, S.; Kimberley, M.O.; Oliver, G.R.; Pearce, S.H.; McGaughey, R.J. Leaf Area Index, Biomass Carbon and Growth Rate of Radiata Pine Genetic Types and Relationships with LiDAR. Forests 2011, 2, 637-659.

AMA Style

Beets PN, Reutebuch S, Kimberley MO, Oliver GR, Pearce SH, McGaughey RJ. Leaf Area Index, Biomass Carbon and Growth Rate of Radiata Pine Genetic Types and Relationships with LiDAR. Forests. 2011; 2(3):637-659.

Chicago/Turabian Style

Beets, Peter N.; Reutebuch, Stephen; Kimberley, Mark O.; Oliver, Graeme R.; Pearce, Stephen H.; McGaughey, Robert J. 2011. "Leaf Area Index, Biomass Carbon and Growth Rate of Radiata Pine Genetic Types and Relationships with LiDAR." Forests 2, no. 3: 637-659.

Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert