Differential Impact of an Eclipse on Photosynthetic Performance of Trees with Different Degrees of Shade Tolerance
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tramer, E.J. Bird Behavior during a Total Solar Eclipse. Wilson J. Ornithol. 2000, 112, 431–432. [Google Scholar] [CrossRef]
- Rutter, S.; Tainton, V.; Champion, R.; Le Grice, P. The effect of a total solar eclipse on the grazing behaviour of dairy cattle. Appl. Anim. Behav. Sci. 2002, 79, 273–283. [Google Scholar] [CrossRef]
- Galen, C.; Miller, Z.; Lynn, A.; Axe, M.J.; Holden, S.; Storks, L.; Ramirez, E.; Asante, E.; Heise, D.; Kephart, S.R.; et al. Pollination on the Dark Side: Acoustic Monitoring Reveals Impacts of a Total Solar Eclipse on Flight Behavior and Activity Schedule of Foraging Bees. Ann. Entomol. Soc. Am. 2019, 112, 20–26. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal Conductance and Photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Beverly, D.; Guadagno, C.R.; Bretfeld, M.; Speckman, H.N.; Albekem, S.E.; Ewers, B.E. Hydraulic and photosynthetic responses of big sagebrush to the 2017 total solar eclipse. Sci. Rep. 2019, 9, 8839. [Google Scholar] [CrossRef]
- Zavala, M.A.; Angulo, Ó.; De La Parra, R.B.; López-Marcos, J.C. An analytical model of stand dynamics as a function of tree growth, mortality and recruitment: The shade tolerance-stand structure hypothesis revisited. J. Theor. Biol. 2007, 244, 440–450. [Google Scholar] [CrossRef]
- Comita, L.S.; Hubbell, S.P. Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology 2009, 90, 328–334. [Google Scholar] [CrossRef]
- Feng, J.; Zhao, K.; He, D.; Fang, S.; Lee, T.M.; Chu, C.; He, F. Comparing shade tolerance measures of woody forest species. PeerJ 2008, 6, e5736. [Google Scholar] [CrossRef]
- Mathur, S.; Jain, L.; Jajoo, A. Photosynthetic efficiency in sun and shade plants. Photosynthetica 2018, 56, 354–365. [Google Scholar] [CrossRef]
- Squeo, F.A.; Loayza, A.P.; López, R.P.; Gutiérrez, J.R. Vegetation of Bosque Fray Jorge National Park and its sur-rounding matrix in the Coastal Desert of north-central Chile. J. Arid. Environ. 2016, 126, 12–22. [Google Scholar] [CrossRef]
- Figueroa, J.A.; Lusk, C.H. Germination requirements and seedling shade tolerance are not correlated in a Chilean temperate rain forest. New Phytol. 2001, 152, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Caro, B.; Gacitúa-Arias, S.E.; Perret, S.; Sandoval, S.; Curimil, M. Propagación de Especies Forestales Nativas de las Zonas Áridas y Semiáridas de Chile; Instituto Forestal INFOR: Santiago, Chile, 2013. [Google Scholar]
- CONAF. Catastro de Uso del Suelo y Vegetación; Corporación Nacional Forestal: Santiago, Chile, 2004. [Google Scholar]
- Muñoz, M.R.; Squeo, F.A.; León, M.; Tracol, Y.; Gutiérrez, J.R. Hydraulic lift in three shrub species from the Chilean coastal desert. J. Arid. Environ. 2008, 72, 624–632. [Google Scholar] [CrossRef]
- Morales, J.; Squeo, F.A.; Tracol, Y.; Armas, C.; Gutiérrez, J.R. Resource economics and coordination among above- and below-ground functional traits of three dominant shrubs from the Chilean coastal desert. J. Plant Ecol. 2015, 8, 70–78. [Google Scholar] [CrossRef][Green Version]
- Munné-Bosch, S.; Alegre, L. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 2000, 210, 925–931. [Google Scholar] [CrossRef]
- Molina-Montenegro, M.A.; Peñuelas, J.; Munné-Bosch, S.; Sardans, J. Higher plasticity in ecophysiological traits enhances the performance and invasion success of Taraxacum officinale (dandelion) in alpine environments. Biol. Invasions 2012, 14, 21–33. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice-Hall/Pearson: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Sambandan, K.; Devi, V.K.; Kumar, S.; Nancharaiah, M.; Dhatchanamoorthy, N. Effects of solar eclipse on pho-tosynthesis of Portulaca oleracea and Phyla nodiflora in coastal wild conditions. J. Phytol. 2012, 4, 34–40. [Google Scholar]
- Tominaga, J.; Kawasaki, S.; Yabuta, S.; Fukuzawa, Y.; Suwa, R.; Kawamitsu, Y. Eclipse Effects on CO2 Profile within and above Sorghum Canopy. Plant Prod. Sci. 2010, 13, 338–346. [Google Scholar] [CrossRef]
- Gupta, U.S. Improving photosynthetic efficiency and crop productivity. In Agro´s Annual Review of Plant Physiology; Purohit, S.S., Sahu, M.P., Eds.; Agro Botanical Publishers: Bikaner, India, 1994; pp. 1–50. [Google Scholar]
- Blankenship, R.E. Molecular Mechanisms of Photosynthesis, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2014. [Google Scholar]
- Shevela, D.; Björn, L.O.; Govindjee, G. Photosynthesis: Solar Energy for Life; World Scientific Publishing: Singapore, 2019. [Google Scholar]
- Gröbner, J.; Kröger, I.; Egli, L.; Hülsen, G.; Riechelmann, S.; Sperfeld, P. The high-resolution extraterrestrial solar spectrum (Qasumefts) determined from ground-based solar irradiance measurements. Atmos. Meas. Tech. 2017, 10, 3375–3383. [Google Scholar] [CrossRef]
- Bernhard, G.; Petkov, B. Measurements of spectral irradiance during the solar eclipse of 21 August 2017: Reas-sessment of the effect of solar limb darkening and of changes in total ozone. Atmos. Chem. Phys. 2019, 19, 4703–4719. [Google Scholar] [CrossRef]
- Govindjee, G.; Shevela, D.; Björn, L.O. Evolution of the Z-scheme of photosynthesis. Photosynth. Res. 2017, 133, 5–15. [Google Scholar] [CrossRef]
- Laisk, A.; Talts, E.; Oja, V.; Eichelmann, H.; Peterson, R.B. Fast cyclic electron transport around photosystem I in leaves under far-red light: A proton-uncoupled pathway? Photosynth. Res. 2010, 103, 79–95. [Google Scholar] [CrossRef]
- Kono, M.; Yamori, W.; Suzuki, Y.; Terashima, I. Photoprotection of PSI by far-red light against the fluctuating light-induced photoinhibition in Arabidopsis thaliana and field-grown plants. Plant Cell Physiol. 2017, 58, 35–45. [Google Scholar]
- Wang, F.; Yan, J.; Jalal-Ahammed, G.; Wang, X.; Bu, X.; Xiang, H.; Li, Y.; Lu, J.; Liu, Y.; Qi, H.; et al. PGR5/PGRL1 and NDH Mediate Far-Red Light-Induced Photoprotection in Response to Chilling Stress in Tomato. Front. Plant Sci. 2020, 11, 669. [Google Scholar] [CrossRef]
- Noton, C. El Guayacán. Chile Forest. 1987, 142, 16–18. [Google Scholar]
- Lusk, C.H.; Contreras, O. Foliage area and crown nitrogen turnover in temperate rain forest juvenile trees of differing shade tolerance. J. Ecol. 1999, 87, 973–983. [Google Scholar] [CrossRef]
- Parada, T.; Lusk, C.H. Patrones en la mortalidad de plántulas de especies arbóreas de un bosque de la transición templado-mediterránea de Chile. Gayana Bot. 2011, 68, 236–243. [Google Scholar] [CrossRef]
- Jahns, P.; Latowski, D.; Strzalka, K. Mechanism and regulation of the violaxanthin cycle: The role of antenna proh-teins and membrane lipids. Biochim. Biophys. Acta Bioenerget. 2009, 1787, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Lambers, H.; Oliveira, R.S. Plant Physiological Ecology, 3rd ed.; Springer: New York, NY, USA, 2019. [Google Scholar]
- Körner, C. Alpine Plant Life, 3rd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; 500p. [Google Scholar]
- Streb, P.; Shang, W.; Feierabend, J.; Bligny, R. Divergent strategies of photoprotection in high-mountain plants. Planta 1998, 207, 313–324. [Google Scholar] [CrossRef]
- Givnish, T.J. Adaptation to sun and shade: A whole-plant perspective. Aust. J. Plant Physiol. 1988, 15, 63–92. [Google Scholar] [CrossRef]
- Pearcy, R.W. Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1990, 41, 421–453. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Pearcy, R.W. The Importance of Sunflecks for Forest Understory Plants. BioScience 1991, 41, 760–766. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Montenegro, M.A.; Atala, C.; Carrasco-Urra, F. Differential Impact of an Eclipse on Photosynthetic Performance of Trees with Different Degrees of Shade Tolerance. Forests 2021, 12, 1353. https://doi.org/10.3390/f12101353
Molina-Montenegro MA, Atala C, Carrasco-Urra F. Differential Impact of an Eclipse on Photosynthetic Performance of Trees with Different Degrees of Shade Tolerance. Forests. 2021; 12(10):1353. https://doi.org/10.3390/f12101353
Chicago/Turabian StyleMolina-Montenegro, Marco A., Cristian Atala, and Fernando Carrasco-Urra. 2021. "Differential Impact of an Eclipse on Photosynthetic Performance of Trees with Different Degrees of Shade Tolerance" Forests 12, no. 10: 1353. https://doi.org/10.3390/f12101353
APA StyleMolina-Montenegro, M. A., Atala, C., & Carrasco-Urra, F. (2021). Differential Impact of an Eclipse on Photosynthetic Performance of Trees with Different Degrees of Shade Tolerance. Forests, 12(10), 1353. https://doi.org/10.3390/f12101353