Next Article in Journal
Effect of Temperature on the Growth of Silver Nanoparticles Using Plasmon-Mediated Method under the Irradiation of Green LEDs
Previous Article in Journal
Study of Reactive Melt Processing Behavior of Externally Plasticized Cellulose Acetate in Presence of Isocyanate
Previous Article in Special Issue
Electrical Properties of CZO Films Prepared by Ultrasonic Spray Pyrolysis
Article Menu

Export Article

Open AccessArticle
Materials 2014, 7(12), 7770-7780; doi:10.3390/ma7127770

Synthesization, Characterization, and in Vitro Evaluation of Cytotoxicity of Biomaterials Based on Halloysite Nanotubes

1
Instituto Tecnológico de Estudios Superiores de Monterrey, Eugenio Garza Sada 2501, Col. Tecnológico, 64849 Monterrey, NL, Mexico
2
Departamento de Ingeniería, Universidad de Monterrey, Ave. Morones Prieto 4500 Pte., Col. Jesús M. Garza, 66238 San Pedro Garza García, NL, Mexico
3
Departamento de Ciencias Básicas, Universidad de Monterrey, Ave. Morones Prieto 4500 Pte., Col. Jesús M. Garza, 66238 San Pedro Garza García, NL, Mexico
4
Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Jesús Aguirre Pequeño esq. Av. Madero, 64460 Monterrey, NL, Mexico
*
Author to whom correspondence should be addressed.
Received: 25 August 2014 / Revised: 16 October 2014 / Accepted: 7 November 2014 / Published: 4 December 2014
(This article belongs to the Special Issue Selected Papers from the 1st International e-Conference on Materials)
View Full-Text   |   Download PDF [2831 KB, uploaded 8 December 2014]   |  

Abstract

Halloysite is an aluminosilicate clay that has been widely used for controlled drug delivery, immobilization of enzymes, and for the capture of circulating tumor cells (CTCs). Surface modification of halloysite by organosilanes has been explored to improve their properties. In this study halloysite clay nanotubes (HNTs) were functionalized by two different organosilanes: Trimethoxy(propyl)silane (TMPS), and Triethoxy(octyl)silane (EOS). Untreated and modified samples were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), thermogravimetrical analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). Results showed a strong interaction of organosilanes with the chemical groups present in HNTs. Biocompatibility and cytotoxicity of these nanomaterials were determined using C6 rat glioblastoma cells. Our results indicate that prior to functionalization, HNTs show a high biocompatibility and low cytotoxicity. However, HNTs functionalized with EOS and TMPS showed high cytotoxicity by inducing apoptosis. These results allow the identification of potential applications in biomedical areas for HNTs. View Full-Text
Keywords: HNTs; organosilanes; characterization; functionalization; cytotoxicity HNTs; organosilanes; characterization; functionalization; cytotoxicity
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Sánchez-Fernández, A.; Peña-Parás, L.; Vidaltamayo, R.; Cué-Sampedro, R.; Mendoza-Martínez, A.; Zomosa-Signoret, V.C.; Rivas-Estilla, A.M.; Riojas, P. Synthesization, Characterization, and in Vitro Evaluation of Cytotoxicity of Biomaterials Based on Halloysite Nanotubes. Materials 2014, 7, 7770-7780.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top