A Study on the Microstructure and Mechanical Properties of Portland Cement Incorporating Aluminosilicate Waste
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure Characteristics
3.2. Analysis of Hydration Products (XRD and TG–DTG)
3.3. Effect of Aluminosilicate Additives on Mechanical Properties
4. Discussion
5. Conclusions
- The aluminosilicate pozzolanic additives (spent fluid catalytic cracking waste and metakaolin waste from the expanded glass industry) investigated in this study were active, and the compressive strength values of the hardened cement pastes after 28 days were the same or higher than those of the samples without pozzolanic additives. The compressive strength values of the samples with the spent fluid catalytic cracking catalyst increased by up to 6% and 12% and by up to 2.5% and 4% when a composite pozzolanic additive (spent fluid catalytic cracking catalyst and metakaolin waste in a 1:1 ratio) was used, respectively, for compositions with and without the superplasticiser, although the cement content of the mixtures was 9% lower. The compressive strengths of the samples with metakaolin waste increased by up to 4% only among the compositions with the superplasticiser.
- Depending on the pozzolanic additive used, different characteristics regarding the formation of the cement microstructure were observed:
- -
- The intensive formation of clusters of portlandite crystals around the spent fluid catalytic cracking waste particles were observed after 28 days in the compositions containing 9% of this additive. Such a phenomenon can be explained by the large specific surface areas of the spent fluid catalytic cracking waste particles, which retain the water required for hydration.
- -
- In the case of the composition without the superplasticiser but with a pozzolanic additive, the portlandite crystals formed on the FCCW particles were smaller in size and had different orientation, and in this composition, a lower content of portlandite was found. In the compositions with the superplasticiser, portlandite was consumed more rapidly for the formation of C-S-H and C-A-S-H due to the pozzolanic effect of MK waste and was no longer identifiable in the FCCW particles in the SEM images, whereas the XRD and DTG results show a reduced amount of portlandite in the entire cementitious paste.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naqi, A.; Jang, J.G. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review. Sustainability 2019, 11, 537. [Google Scholar] [CrossRef]
- Lei, Z.; Pavia, S. Potential of spent fluid cracking catalyst (FCC) waste for low-carbon cement production. Effect of treatments to enhance reactivity. Cement 2023, 14, 100081. [Google Scholar] [CrossRef]
- Al-Mansour, A.; Chow, C.L.; Feo, L.; Penna, R.; Lau, D. Green Concrete: By-Products Utilization and Advanced Approaches. Sustainability 2019, 11, 5145. [Google Scholar] [CrossRef]
- Wang, L.; Jin, M.; Zhou, S.; Tang, S.; Lu, X. Investigation of microstructure of CSH and micro-mechanics of cement pastes under NH4NO3 dissolution by 29Si MAS NMR and microhardness. Measurement 2021, 185, 110019. [Google Scholar] [CrossRef]
- Kurdowski, W. Cement and Concrete Chemistry; Springer: Dordrecht, The Netherlands, 2014; ISBN 978-94-007-7944-0. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Jamil, M.; Khan, M.N.N.; Karim, M.R.; Kaish, A.B.M.A.; Zain, M.F.M. Physical and chemical contributions of Rice Husk Ash on the properties of mortar. Constr. Build. Mater. 2016, 128, 185–198. [Google Scholar] [CrossRef]
- Inan Sezer, G. Compressive strength and sulfate resistance of limestone and/or silica fume mortars. Constr. Build. Mater. 2012, 26, 613–618. [Google Scholar] [CrossRef]
- Liao, Y.; Yao, J.; Deng, F.; Li, H.; Wang, K.; Tang, S. Hydration behavior and strength development of supersulfated cement prepared by calcined phosphogypsum and slaked lime. J. Build. Eng. 2013, 80, 108075. [Google Scholar] [CrossRef]
- Antonovič, V.; Boris, R.; Malaiškienė, J.; Kizinievič, V.; Stonys, R. Effect of milled fluidised bed cracking catalyst waste on hydration of calcium aluminate cement and formation of binder structure. J. Therm. Anal. Calorim. 2020, 142, 75–84. [Google Scholar] [CrossRef]
- Pacewska, B.; Nowacka, M.; Aleknevičius, M.; Antonovič, V. Early hydration of calcium aluminate cement blended with spent FCC catalyst at two temperatures. Procedia Eng. 2013, 57, 844–850. [Google Scholar] [CrossRef]
- Da, Y.; He, T.; Wang, M.; Shi, C.; Xu, R.; Yang, R. The effect of spent petroleum catalyst powders on the multiple properties in blended cement. Constr. Build. Mater. 2020, 231, 117–203. [Google Scholar] [CrossRef]
- Malaiskiene, J.; Costa, C.; Baneviciene, V.; Antonovic, V.; Vaiciene, M. The effect of nano SiO2 and spent fluid catalytic cracking catalyst on cement hydration and physical mechanical properties. Constr. Build. Mater. 2021, 299, 124281. [Google Scholar] [CrossRef]
- Vaičiukynienė, D.; Mikelionienė, A.; Kantautas, A.; Radzevičius, A.; Bajare, D. The influence of zeolitic by-product containing ammonium ions on properties of hardened cement paste. Minerals 2021, 11, 123. [Google Scholar] [CrossRef]
- Lu, B.; Li, H.; Li, M.; Wong, T.N.; Qian, S. Mechanism and design of fluid catalytic cracking ash-blended cementitious composites for high performance printing. Addit. Manuf. 2023, 61, 103286. [Google Scholar] [CrossRef]
- Pacewska, B.; Bukowska, M.; Wilińska, I.; Swat, M. Modification of the properties of concrete by a new pozzolan—A waste catalyst from the catalytic process in a fluidized bed. Cem. Concr. Res. 2002, 32, 145–152. [Google Scholar] [CrossRef]
- Paya, J.; Monzó, J.; Borrachero, M.V.; Velázquez, S. Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). thermogravimetric analysis studies on FC3R-portland cement pastes. Cem. Concr. Res. 2003, 33, 603–609. [Google Scholar] [CrossRef]
- Costa, C.; Marques, J.C. Feasibility of eco-friendly binary and ternary blended binders made of fly-ash and oil-refinery spent catalyst in ready-mixed concrete production. Sustainability 2018, 10, 3136. [Google Scholar] [CrossRef]
- Su, N.; Fang, H.; Chen, Z.; Liu, F. Reuse of waste catalysts from petro-chemical industries for cement substitution. Cem. Concr. Res. 2000, 30, 1773–1783. [Google Scholar] [CrossRef]
- Vaičiukynienė, D.; Grinys, A.; Vaitkevičius, V.; Kantautas, A. Purified waste FCC catalyst as a cement replacement material. Ceram.–Silikáty 2015, 59, 103–108. [Google Scholar]
- Al-Jabri, K.; Baawain, M.; Taha, R.; Al-Kamyani, Z.S.; Al-Shamsi, K.; Ishtieh, A. Potential use of FCC spent catalyst as partial replacement of cement or sand in cement mortars. Conctr. Build. Mater. 2013, 39, 77–81. [Google Scholar] [CrossRef]
- Saikia, N.J.; Sengupta, P.; Gogoi, P.K.; Borthakur, P.C. Hydration behavior of lime-co-calcined kaolin-petroleum effluent treatment plant sludge. Cem. Concr. Res. 2002, 32, 297–302. [Google Scholar] [CrossRef]
- Rashad, A.M. Metakaolin as cementitious material: History, scours, production and composition—A comprehensive overview. Constr. Build. Mater. 2013, 41, 303–318. [Google Scholar] [CrossRef]
- Kamseu, E.; Cannio, M.; Obonyo, E.A.; Tobias, F.; Bignozzi, M.C.; Sglavo, V.B.; Leonelli, C. Metakaolin-based inorganic polymer composite: Effects of fine aggregate composition and structure on porosity evolution, microstructure and mechanical properties. Cem. Concr. Comp. 2014, 53, 258–269. [Google Scholar] [CrossRef]
- Vejmelkova, E.; Pavlikova, M.; Keppert, M.; Kersner, Z.; Rovnanikova, P.; Ondracek, M. High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics. Constr. Build. Mater. 2010, 24, 1404–1411. [Google Scholar] [CrossRef]
- Gruber, K.A.; Ramlochan, T.; Boddy, A.; Hooton, R.D.; Thomas, M.D.A. Increasing concrete durability with high reactivity metakaolin. Cem. Concr. Comp. 2001, 23, 479–484. [Google Scholar] [CrossRef]
- Lapeyre, J.; Kumar, A. Influence of pozzolanic additives on hydration mechanisms of tricalcium silicate. Am. Ceram. Soc. 2018, 101, 3557–3574. [Google Scholar] [CrossRef]
- Menhosh, A.; Wang, Y.; Wang, Y.; Augusthus-Nelson, L. Long term durabil-ity properties of concrete modified with metakaolin and polymer admixture. Constr. Build. Mater. 2018, 172, 41–51. [Google Scholar] [CrossRef]
- Krajci, L.; Mojumdar, S.C.; Janotka, I.; Puertas, F.; Palacios, M.; Kuliffayova, M. Performance of composites with metakaolin-blended cements. J. Therm. Anal. Calorim. 2015, 119, 851–863. [Google Scholar] [CrossRef]
- Soriano, L.; Payá, J.; Monzó, J.; Borrachero, M.V.; Tashima, M.M. High strength mortars using ordinary Portland cement–fly ash–fluid catalytic cracking catalyst residue ternary system (OPC/FA/FCC). Constr. Build. Mater. 2016, 106, 228–235. [Google Scholar] [CrossRef]
- Wilińska, I.; Pacewska, B. Calorimetric and thermal analysis studies on the influence of waste aluminosilicate catalyst on the hydration of fly ash–cement paste. J. Therm. Anal. Calorim. 2014, 116, 689–697. [Google Scholar] [CrossRef]
- Velázquez, S.; Monzó, J.; Borrachero, M.V.; Soriano, L.; Payá, J. Evaluation of the pozzolanic activity of spent FCC catalyst/fly ash mixtures in Portland cement pastes. Thermochim. Acta 2016, 632, 29–36. [Google Scholar] [CrossRef]
- Gurdián, H.; García-Alcocel, E.; Baeza-Brotons, F.; Garcés, P.; Zornoza, E. Corrosion behavior of steel reinforcement in concrete with recycled aggregates, fly ash and spent cracking catalyst. Materials 2014, 7, 3176–3197. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guo, F.; Lin, Y.; Yang, H.; Tang, S.W. Comparison between the effects of phosphorous slag and fly ash on the C-S-H structure, longterm hydration heat and volume deformation of cement-based materials. Constr. Build. Mater. 2020, 250, 118807. [Google Scholar] [CrossRef]
- LST EN 1015-11; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. Lietuvos Standartizacijos Departamentas: Vilnius, Lithuania, 2020; 15p.
- Han, S.; Yan, P.Y.; Liu, R.G. Study on the hydration product of cement in early age using TEM. Sci. China Technol. Sci. 2012, 55, 2284–2290. [Google Scholar] [CrossRef]
- El-Gamal, S.M.A.; Abo-El-Enein, S.A.; El-Hosiny, F.I.; Amin, M.S.; Ramadan, M. Thermal resistance, microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles. J. Therm. Anal. Calorim. 2018, 131, 949–968. [Google Scholar] [CrossRef]
- Badogiannis, E.; Papadakis, V.G.; Chaniotakis, E.; Tsivilis, S. Exploitation of poor Greek kaolins: Strength development of metakaolin concrete and evaluation by means of k-value. Cem. Concr. Res. 2004, 34, 1035–1041. [Google Scholar] [CrossRef]
- Hu, J. Comparison between the effects of superfine steel slag and superfine phosphorus slag on the long-term performances and durability of concrete. J. Therm. Anal. Calorim. 2017, 128, 1251–1263. [Google Scholar] [CrossRef]
- Pereira, M.M.L.; Souza, A.L.R.; Capuzzo, V.M.S.; Lameiras, R. Effect of the water/binder ratio on the hydration process of Portland cement pastes with silica fume and metakaolin. Rev. IBRACON Estrut. Mater. 2022, 15, e15105. [Google Scholar] [CrossRef]
- Šeputyte-Jucike, J.; Kligys, M.; Sinica, M. The effects of modifying additives and chemical admixtures on theproperties of porous fresh and hardened cement paste. Constr. Build. Mater. 2016, 127, 679–691. [Google Scholar] [CrossRef]
- Costa, C.; Marques, P. Low-carbon cement with waste oil-cracking catalyst incorporation. In Proceedings of the IEEE-IAS/PCA 54th Cement Industry Technical Conference, San Antonio, TX, USA, 13–17 May 2012; pp. 1–9. [Google Scholar]
- Antonovič, V.; Sikarskas, D.; Malaiškienė, J.; Boris, R.; Stonys, R. Effect of pozzolanic waste materials on hydration peculiarities of Portland cement and granulated expanded glass-based plaster. J. Therm. Anal. Calorim. 2019, 138, 4127–4137. [Google Scholar] [CrossRef]
- Agredo, J.T.; García, S.I.; Serna, J.T. Estudio comparativo de pastas de cemento adicionadas con catalizador de craqueo catalítico usado (FCC), y metacaolin (MK). Cienc. Ing. Neogranadina 2012, 22, 7–17. [Google Scholar] [CrossRef]
- Kaminskas, R.; Cesnauskas, V.; Kubiliute, R. Influence of different artificial additives on Portland cement hydration and hardening. Constr. Build. Mater. 2015, 95, 537–544. [Google Scholar] [CrossRef]
- Mikhailenko, P.; Cassagnabere, F.; Emam, A.; Lachemi, M. Influence of physico-chemical characteristics on the carbonation of cement paste at high replacement rates of metakaolin. Constr. Build. Mater. 2018, 158, 164–172. [Google Scholar] [CrossRef]
- Vaičiukynienė, D.; Pundienė, I.; Kantautas, A.; Augonis, A.; Janavičius, E.; Vaičiukynas, V.; Alobeid, J. Synergic effect of dry sludge from wastewater concrete plants and zeolitic by-product on ternary blended ordinary Portland cements properties. J. Clean. Prod. 2019, 244, 118493. [Google Scholar] [CrossRef]
- Pundienė, I.; Kligys, M.; Šeputytė-Jucikė, J. Portland cement based lightweight multifunctional matrix with different kind of additives containing SiO2. Key Eng. Mater. 2014, 604, 305–308. [Google Scholar] [CrossRef]
Material | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | Na2O | SO3 | CaO | Mn2O3 | TiO2 | Cl | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PC | 20.4 | 4.00 | 3.60 | 2.40 | 0.90 | 0.20 | 3.10 | 63.2 | – | – | 0.05 | 2.15 |
FCCW | 50.1 | 41.3 | 1.30 | 0.49 | 0.07 | 0.20 | 2.30 | 0.50 | 0.06 | – | – | 1.90 |
MK | 54.3 | 34.0 | 1.14 | 0.51 | 0.80 | 3.26 | 0.15 | 1.94 | – | 0.53 | – | 3.37 |
Composition | Material | W/B | |||
---|---|---|---|---|---|
PC | FCCW | MK | SP * | ||
C-0 | 100 | – | – | – | 0.35 |
C-CW | 91 | 9.0 | – | – | 0.35 |
C-MK | 91 | – | 9.0 | – | 0.35 |
C-CMK | 91 | 4.5 | 4.5 | – | 0.35 |
CP-0 | 100 | – | – | 1 | 0.25 |
CP-CW | 91 | 9.0 | – | 1 | 0.25 |
CP-MK | 91 | – | 9.0 | 1 | 0.25 |
CP-CMK | 91 | 4.5 | 4.5 | 1 | 0.25 |
Composition | The Amount of Portlandite, wt. % | Mass Loss in the Temperature Range 110–350 °C, % | ||
---|---|---|---|---|
After 7 Days | After 28 Days | After 7 Days | After 28 Days | |
C-0 | 12.68 | 13.90 | 9.10 | 11.00 |
C-CW | 11.47 | 6.96 | 8.98 | 9.58 |
C-MK | 11.20 | 6.74 | 8.46 | 9.19 |
C-CMK | 10.99 | 6.87 | 8.47 | 9.29 |
CP-0 | 7.60 | 8.72 | 8.44 | 8.71 |
CP-CW | 6.89 | 7.18 | 12.78 | 10.02 |
CP-MK | 6.36 | 6.74 | 10.96 | 9.19 |
CP-CMK | 6.06 | 6.85 | 11.96 | 9.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonovič, V.; Sikarskas, D.; Boris, R.; Kudžma, A.; Malaiškienė, J.; Stonys, R. A Study on the Microstructure and Mechanical Properties of Portland Cement Incorporating Aluminosilicate Waste. Materials 2024, 17, 354. https://doi.org/10.3390/ma17020354
Antonovič V, Sikarskas D, Boris R, Kudžma A, Malaiškienė J, Stonys R. A Study on the Microstructure and Mechanical Properties of Portland Cement Incorporating Aluminosilicate Waste. Materials. 2024; 17(2):354. https://doi.org/10.3390/ma17020354
Chicago/Turabian StyleAntonovič, Valentin, Donatas Sikarskas, Renata Boris, Andrius Kudžma, Jurgita Malaiškienė, and Rimvydas Stonys. 2024. "A Study on the Microstructure and Mechanical Properties of Portland Cement Incorporating Aluminosilicate Waste" Materials 17, no. 2: 354. https://doi.org/10.3390/ma17020354