Experimental Study on Effects of CO2 Curing Conditions on Mechanical Properties of Cement Paste Containing CO2 Reactive Hardening Calcium Silicate Cement
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Factors and Levels
2.2. Materials
2.3. Curing Method
2.4. Test Methods
2.4.1. Compressive Strength Evaluation
2.4.2. Carbonation Depth Evaluation
2.5. Quantitative Analysis
2.5.1. XRD Analysis
2.5.2. Thermogravimetric Analysis (TGA)
2.5.3. Fourier Transform Infrared Spectroscopy (FT-IR)
3. Results
3.1. Carbonation Depth Analysis Results
3.2. Results of XRD Analysis and TG-DTA
3.3. FT-IR Analysis Results
3.4. Compressive Strength Analysis Results
4. Discussion
4.1. Effect of Moisture on Carbonation Curing
4.2. Changes in Mechanical Properties during Carbonation Curing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Global Warming of 1.5 °C; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Ministry of Environment. 2023 Nationally Determined Contribution; Ministry of Environment: Sejong, Republic of Korea, 2021.
- Ministry of Environment. National Greenhouse Gas Inventory Report of Korea; Ministry of Environment: Sejong, Republic of Korea, 2022.
- Xian, X.; Zhang, D.; Lin, H.; Shao, Y. Ambient pressure carbonation curing of reinforced concrete for CO2 utilization and corrosion resistance. J. CO2 Util. 2022, 56, 101861. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data Discuss. 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- UN Environment; Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development. Cement Technology Roadmap 2009: Carbon Emissions Reductions up to 2050; World Business Council for Sustainable Development: Geneva, Switzerland, 2009. [Google Scholar]
- Wang, X.; Guo, M.; Ling, T. Review on CO2 curing of non-hydraulic calcium silicates cements: Mechanism, carbonation and performance. Cem. Concr. Compos. 2022, 133, 104641. [Google Scholar] [CrossRef]
- Hwa, S.S. A Study on the Manufacturing of Carbon Dioxide Absorption Hardening Calcium Silicate Based Eco-Friendly Cement. Master’s Thesis, Korea National University of Transportation, Chungju, Republic of Korea, 2021. [Google Scholar]
- Nicholas, D.; Vincent, M.; Soda, S.; Jason, B.; Moro, F. Environmental Impact of carbonated calcium silicate cement-based concrete. Constr. Mater. 2018, 172, 1–9. [Google Scholar]
- Vincent, M.; Sada, S.; Andrew, D. Properties of Solidia Cement and Concrete. In Proceedings of the 1st International Conference on Innovation in Low Carbon Cement & Concrete Technology, London, UK, 24–26 June 2019. [Google Scholar]
- Lu, B.; Shi, C.; Hou, G. Strength and microstructure of CO2 cured low-calcium clinker. Constr. Build. Mater. 2018, 188, 417–423. [Google Scholar] [CrossRef]
- Ashraf, W.; Olek, J. Elucidating the accelerated carbonation products of calcium silicate using multi-technique approach. J. CO2 Util. 2018, 23, 61–74. [Google Scholar] [CrossRef]
- Li, L.; Liu, Q.; Dao, V.; Wu, M. Dimensional change of cement paste subjected to carbonation in CO2 sequestration and utilization context: A critical review on the mechanisms. J. CO2 Util. 2023, 70, 102444. [Google Scholar]
- Manns, W.; Wesche, K. Variation in Strength of Mortars Made of Different Cements due to Carbonation. Cem. Assoc. Jpn. 1968, 3, 385–393. [Google Scholar]
- Matsusato, H.; Ogawa, K.; Funato, M.; Sato, T. Studies on the Carbonation of Hydrated Cement and its Effect on Microstructure and Strength. Natl. Counc. Cem. Build. Mater. 1992, 5, 363–369. [Google Scholar]
- Xiao, J.; Li, J.; Zhu, B.; Fan, Z. Experimental study on strength and ductility of carbonated concrete elements. Constr. Build. Mater. 2002, 16, 187–192. [Google Scholar] [CrossRef]
- Kwon, Y.R.; Kim, H.S.; Lee, C.Y.; Cheng, H.M.; Ahn, T.S. Carbonation and Strength of High Strength Binary Concrete Used Ground Granulated Blast Furnace Slag. J. Korea Concr. Insitiute 2015, 20, 561–564. [Google Scholar]
- Moradllo, M.K.; Ghantous, R.M.W.; Quinn, S.; Aktan, V.; Reese, S.; Weiss, W.J. Quantifying drying and carbonation in calcium silicate-cement systems using neutron radiography. ACI Mater. J. 2022, 119, 231–242. [Google Scholar]
- Cui, H.; Tang, W.; Liu, W.; Dong, Z.; Xing, F. Experimental study on effects of CO2 concentrations of concrete carbonation and diffusion mechanisms. Constr. Build. Mater. 2015, 93, 522–527. [Google Scholar] [CrossRef]
- Ashraf, W.; Olek, J.; Sahu, S. Phase evolution and strength development during carbonation of low-lime calcium silicate cement (CSC). Constr. Build. Mater. 2019, 210, 473–482. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, Q.; Huo, Z.; Zhu, Z.; Wu, F.; Lu, B. An approach to improve compressive strength of cement paste at low temperature by carbonation curing. Constr. Build. Mater. 2023, 365, 130128. [Google Scholar] [CrossRef]
- Pan, X.; Shi, C.; Farzadnia, N.; Hu, X.; Zheng, J. Properties and microstructure of CO2 surface treated cement mortars with subsequent lime-saturated water curing. Cem. Concr. Compos. 2019, 99, 89–99. [Google Scholar] [CrossRef]
- Ylmén, R.; Wadsö, L.; Panas, I. Insights into early hydration of Portland limestone cement from infrared spectroscopy and isothermal calorimetry. Cem. Concr. Res. 2010, 40, 1541–1546. [Google Scholar]
- Dong, B.; Qiu, Q.; Xiang, J.; Huang, C.; Xing, F.; Han, N. Study on the carbonation behavior of cement mortar by electrochemical impedance spectroscopy. Materials 2014, 7, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Mizokami, Y.; Ichiro, T. Cross-point of water and carbon in the leaf-CO2 diffusion conductance. Jpn. J. Ecol. 2016, 66, 477–487. [Google Scholar]
- Genty, B.; Meyer, S.; Piel, C.; Badeck, F.; Liozon, R. CO2 diffusion inside leaf mesophyll of ligneous plants. In Photosynthesis: Mechanisms and Effects; Garab, G., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherland, 1998; Volume 1, pp. 3961–3966. [Google Scholar]
Country | CO2 Emissions per Capita (tCO2) | CO2 Emissions (MtCO2) |
---|---|---|
China | 8.0 | 11,472.37 |
United States of America | 15 | 5007 |
India | 1.9 | 2710 |
Russian Federation | 12 | 1756 |
Japan | 8.6 | 1067 |
Iran | 8.5 | 749 |
Germany | 8.1 | 675 |
Saudi Arabia | 19 | 672 |
Indonesia | 2.3 | 619 |
South Korea | 12 | 616 |
Factors | Title 2 | Levels | Notes | |
---|---|---|---|---|
Specimens | W/B | 0.36 | Paste | |
CSC (%) | 0, 50, 10 | |||
Curing | Pre-curing | Steam curing | KS L 4004 | |
Carbonation Curing | CO2 20% | 4, 8, 12, 24 h | ||
CO2 99% | 4, 8, 12, 24 h | |||
Mechanical properties | Compressive strength | KS F 5105 | ||
Quantitative analysis | Carbonation depth, XRD, TG-DTA, FT-IR, SEM |
Chemical Composition (wt%) | |||||
---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | |
BSC | 52.64 | 19.86 | 7.41 | 2.21 | 4.2 |
CSC | 48.28 | 44 | 0.45 | 0.67 | 0.46 |
Title 1 | CO2 20% | CO2 99% | |||
---|---|---|---|---|---|
400–500 °C | 600–800 °C | 400–500 °C | 600–800 °C | ||
CSC0 | 4 h—5 mm | 1.48 | 1.55 | 1.36 | 2.76 |
8 h—5 mm | 1.63 | 2.36 | 1.53 | 3.05 | |
12 h—5 mm | 1.23 | 2.76 | 1.2 | 2.3 | |
24 h—5 mm | 1.54 | 2.04 | 1.23 | 2.36 | |
CSC50 | 4 h—5 mm | 1.04 | 3.64 | 1.45 | 3.32 |
8 h—5 mm | 1.24 | 4.23 | 1.68 | 2.72 | |
12 h—5 mm | 0.63 | 5.31 | 1.06 | 3.04 | |
24 h—5 mm | 0.95 | 7.2 | 1.23 | 3.02 | |
CSC100 | 4 h—5 mm | 1.17 | 1.78 | 0.88 | 2.57 |
8 h—5 mm | 0 | 0.84 | 0.53 | 4.13 | |
12 h—5 mm | 0 | 11.39 | 1.55 | 1.26 | |
24 h—5 mm | 0.16 | 12.04 | 1.6 | 1.36 | |
24 h—10 mm | 0.17 | 11.05 | 1.2 | 1.02 | |
24 h—15 mm | 0.13 | 9.04 | 1.16 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-J.; Sim, S.-R.; Ryu, D.-W. Experimental Study on Effects of CO2 Curing Conditions on Mechanical Properties of Cement Paste Containing CO2 Reactive Hardening Calcium Silicate Cement. Materials 2023, 16, 7107. https://doi.org/10.3390/ma16227107
Kim Y-J, Sim S-R, Ryu D-W. Experimental Study on Effects of CO2 Curing Conditions on Mechanical Properties of Cement Paste Containing CO2 Reactive Hardening Calcium Silicate Cement. Materials. 2023; 16(22):7107. https://doi.org/10.3390/ma16227107
Chicago/Turabian StyleKim, Young-Jin, Sang-Rak Sim, and Dong-Woo Ryu. 2023. "Experimental Study on Effects of CO2 Curing Conditions on Mechanical Properties of Cement Paste Containing CO2 Reactive Hardening Calcium Silicate Cement" Materials 16, no. 22: 7107. https://doi.org/10.3390/ma16227107