Accelerated Aging Behavior in Alkaline Environments of GFRP Reinforcing Bars and Their Bond with Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.1.1. Samples for Direct Immersion
2.1.2. Samples Embedded in Concrete for Indirect Immersion
2.1.3. Pull-Out Specimens
2.2. Accelerated Aging Protocols
2.3. Characterizations before and after Aging
2.3.1. Monitoring of the Mass and Diameter of Aging Rebars
2.3.2. Microstructural Observations
2.3.3. Differential Scanning Calorimetry
2.3.4. Fourier Transform Infrared Spectrometry
2.3.5. Tensile Tests
2.3.6. Short-Beam Tests
2.3.7. Bond Tests
2.4. Summary of the Experimental Programme
3. Results and Discussions
3.1. Microstructural Observations
3.2. Mass and Diameter Evolutions
3.3. Physico-Chemical Properties of the Polymer Matrix
3.3.1. Glass Transition Temperature
3.3.2. FTIR Analyses
3.4. Tensile Behavior of the Rebars after Direct Immersion
3.4.1. Longitudinal Tensile Strength and Elastic Modulus
3.4.2. Long-Term Prediction Based on the Arrhenius Approach
3.5. Interlaminar Shear Strength of the Rebars after Direct and Indirect Aging
3.6. Bond Properties of the GFRP Rebars with Concrete
3.6.1. Evolution of the Concrete Properties over Aging
3.6.2. Results of Pull-Out Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Davalos, J.F.; Ray, I.; Kim, H.-Y. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures. Compos. Struct. 2007, 78, 101–111. [Google Scholar] [CrossRef]
- Murphy, K.; Zhang, S.; Karbhari, V.M. Effect of concrete based alkaline solutions on short term response of composites. In Proceedings of the 44th International SAMPE Symposium and Exhibition, Long Beach, CA, USA, 23–27 May 1999; Cohen, L.J., Bauer, J.L., Davis, W.E., Eds.; Society for the Advancement of Material and Process Engineering: Long Beach, CA, USA, 1999; pp. 2222–2230. [Google Scholar]
- Chen, Y.; Davalos, J.F.; Ray, I. Durability Prediction for GFRP Reinforcing Bars Using Short-Term Data of Accelerated Aging Tests. J. Compos. Constr. 2006, 10, 279–286. [Google Scholar] [CrossRef]
- Katsuki, F.; Uomoto, T. Prediction of deterioration of FRP rods due to alkali attack. In Non-Metallic (FRP) Reinforcement for Concrete Structures; E&FN Spon: London, UK, 1995; pp. 82–89. [Google Scholar]
- Dejke, V.; Tepfers, R. Durability and Service Life Prediction of GFRP for Concrete Reinforcement. In Proceedings of the 4th International Conference on Fibre-Reinforced Plastics for Reinforced Concrete Structures FRPRCS-5, Cambridge, UK, 16–18 July 2001; pp. 515–520. [Google Scholar]
- Benmokrane, B.; Wang, P.; Ton-That, T.M.; Rahman, H.; Robert, J.-F. Durability of Glass Fiber-Reinforced Polymer Reinforcing Bars in Concrete Environment. J. Compos. Constr. 2002, 6, 143–153. [Google Scholar] [CrossRef]
- Sen, R.; Mullins, G.; Salem, T. Durability of E-glass/vinylester reinforcement in alkaline solution. ACI Struct. J. 2002, 99, 369–375. [Google Scholar]
- Micelli, F.; Nanni, A. Durability of FRP rods for concrete structures. Constr. Build. Mater. 2004, 18, 491–503. [Google Scholar] [CrossRef]
- Debaiky, A.S.; Nkurunziza, G.; Benmokrane, B.; Cousin, P. Residual Tensile Properties of GFRP Reinforcing Bars after Loading in Severe Environments. J. Compos. Constr. 2006, 10, 370–380. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Park, Y.-H.; You, Y.-J.; Moon, C.-K. Short-term durability test for GFRP rods under various environmental conditions. Compos. Struct. 2008, 83, 37–47. [Google Scholar] [CrossRef]
- Robert, M.; Cousin, P.; Benmokrane, B. Durability of GFRP Reinforcing Bars Embedded in Moist Concrete. J. Compos. Constr. 2009, 13, 66–73. [Google Scholar] [CrossRef] [Green Version]
- D’Antino, T.; Pisani, M.; Poggi, C. Effect of the environment on the performance of GFRP reinforcing bars. Compos. Part B Eng. 2018, 141, 123–136. [Google Scholar] [CrossRef]
- El-Hassan, H.; El-Maaddawy, T.; Al-Sallamin, A.; Al-Saidy, A. Durability of glass fiber-reinforced polymer bars conditioned in moist seawater-contaminated concrete under sustained load. Constr. Build. Mater. 2018, 175, 1–13. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.-L.; Xian, G.; Wu, G.; Raman, R.S.; Al-Saadi, S. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars. Corros. Sci. 2018, 138, 200–218. [Google Scholar] [CrossRef]
- Manalo, A.; Maranan, G.; Benmokrane, B.; Cousin, P.; Alajarmeh, O.; Ferdous, W.; Liang, R.; Hota, G. Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments. Cem. Concr. Compos. 2020, 109, 103564. [Google Scholar] [CrossRef]
- Tu, J.; Xie, H.; Gao, K. Prediction of the Long-Term Performance and Durability of GFRP Bars under the Combined Effect of a Sustained Load and Severe Environments. Materials 2020, 13, 2341. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.; Wang, P.; Cousin, P.; Benmokrane, B. Temperature as an Accelerating Factor for Long-Term Durability Testing of FRPs: Should There Be Any Limitations? J. Compos. Constr. 2010, 14, 361–367. [Google Scholar] [CrossRef]
- Bank, L.C.; Puterman, M.; Katz, A. The effect of material degradation on bond properties of fiber reinforced plastic reinforcing bars in concrete. ACI Mater. J. 1998, 95, 232–243. [Google Scholar]
- Davalos, J.F.; Chen, Y.; Ray, I. Effect of FRP bar degradation on interface bond with high strength concrete. Cem. Concr. Compos. 2008, 30, 722–730. [Google Scholar] [CrossRef]
- Robert, M.; Benmokrane, B. Effect of aging on bond of GFRP bars embedded in concrete. Cem. Concr. Compos. 2010, 32, 461–467. [Google Scholar] [CrossRef]
- Masmoudi, R.; Masmoudi, A.; Ben Ouezdou, M.; Daoud, A. Long-term bond performance of GFRP bars in concrete under temperature ranging from 20 °C to 80 °C. Constr. Build. Mater. 2011, 25, 486–493. [Google Scholar] [CrossRef]
- Zheng, Y.; Ni, M.; Lu, C.; Chu, T.; Wu, X. Bond behaviour of GFRP-concrete under long-term exposure to aggressive environments. J. Adv. Concr. Technol. 2020, 18, 730–742. [Google Scholar] [CrossRef]
- Bank, L.C.; Gentry, T.; Thompson, B.P.; Russell, J.S. A model specification for FRP composites for civil engineering structures. Constr. Build. Mater. 2003, 17, 405–437. [Google Scholar] [CrossRef]
- Weber, A.; Witt, C. Durability Design for FRP Rebars. In Proceedings of the CDCC-07 Conference, Quebec, QC, Canada, 22–24 May 2007. [Google Scholar]
- Ali, A.H.; Mohamed, H.M.; Benmokrane, B.; ElSafty, A.; Chaallal, O. Durability performance and long-term prediction models of sand-coated basalt FRP bars. Compos. Part B Eng. 2019, 157, 248–258. [Google Scholar] [CrossRef]
- Mufti, A.A.; Banthia, N.; Benmokrane, B.; Boulfiza, M.; Newhook, J.P. Durability of GFRP composite rods. Concr. Int. 2007, 29, 37–42. [Google Scholar]
- Gooranorimi, O.; Nanni, A. GFRP Reinforcement in Concrete after 15 Years of Service. J. Compos. Constr. 2017, 21, 04017024. [Google Scholar] [CrossRef]
- Benmokrane, B.; Nazair, C.; Loranger, M.-A.; Manalo, A. Field Durability Study of Vinyl-Ester–Based GFRP Rebars in Concrete Bridge Barriers. J. Bridg. Eng. 2018, 23, 04018094. [Google Scholar] [CrossRef]
- Benzecry, V.; Al-Khafaji, A.F.; Haluza, R.T.; Bakis, C.E.; Myers, J.J.; Nanni, A. Durability Assessment of 15- to 20-Year-Old GFRP Bars Extracted from Bridges in the US. I: Selected Bridges, Bar Extraction, and Concrete Assessment. J. Compos. Constr. 2021, 25, 04021007. [Google Scholar] [CrossRef]
- Al-Khafaji, A.F.; Haluza, R.T.; Benzecry, V.; Myers, J.J.; Bakis, C.E.; Nanni, A. Durability Assessment of 15- to 20-Year-Old GFRP Bars Extracted from Bridges in the US. II: GFRP Bar Assessment. J. Compos. Constr. 2021, 25, 04021008. [Google Scholar] [CrossRef]
- Ramanathan, S.; Benzecry, V.; Suraneni, P.; Nanni, A. Condition assessment of concrete and glass fiber reinforced polymer (GFRP) rebar after 18 years of service life. Case Stud. Constr. Mater. 2021, 14, e00494. [Google Scholar] [CrossRef]
- Benmokrane, B.; Ali, A.H.; Mohamed, H.M.; ElSafty, A.; Manalo, A. Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures. Compos. Part B Eng. 2017, 114, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Gravina, R.J.; Li, J.; Smith, S.T.; Visintin, P. Environmental Durability of FRP Bar-to-Concrete Bond: Critical Review. J. Compos. Constr. 2020, 24, 03120001. [Google Scholar] [CrossRef]
- Rolland, A. Comportement Mécanique et Durabilité de Structures en béton Renforcées Par des Armatures Composites Internes. Ph.D. Thesis, Université Paris-Est, Ifsttar, France, 2015. (In French). [Google Scholar]
- Achillides, Z.; Pilakoutas, P. Bond behavior of fiber reinforced polymer bars under direct pullout conditions. J. Compos. Constr. 2004, 8, 173–181. [Google Scholar] [CrossRef]
- Nobel Pujol, V. Etude du Mécanisme D’action du Monofluorophosphate de Sodium Comme Inhibiteur de la Corrosion des Armatures Métalliques Dans le Béton. Ph.D Thesis, Université Paris VI (UPMC), Paris, France, 2004. (In French). [Google Scholar]
- Bruneaux, M.A.; Benzarti, K. Durabilité des Assemblages Collés: Modélisation Mécanique et Physico-Chimique. Etudes et Recherches des Laboratoires des Ponts et Chaussées; ERLPC OA 55: Paris, France, 2006. (In French) [Google Scholar]
- ACI 440.3R-04. Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for Reinforcing or Strengthening Concrete Structures; American Concrete Institute (ACI): Farmington Hills, MI, USA, 2004. [Google Scholar]
- NF EN ISO 11357-2. Plastiques—Analyse Calorimétrique Différentielle (DSC)—Partie 2: Détermination de la Température de Transition Vitreuse et de la Hauteur de Palier de Transition Vitreuse; Association Française de Normalisation (Afnor): La Plaine Saint-Denis, France, 2014. (In French) [Google Scholar]
- Verdu, J. Action de l’eau sur les Plastiques. Techniques de l’Ingénieur, AM3165, Traité des Plastiques et des Composites, Technical Report. 2000. (In French). Available online: https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/proprietes-generales-des-plastiques-42152210/action-de-l-eau-sur-les-plastiques-am3165/ (accessed on 1 August 2021).
- ASTM D7205/D7205M-06. Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars; American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2006. [Google Scholar]
- ASTM D4475-02. Standard Test Method for Apparent Horizontal Shear Strength of Pultruded Reinforced Plastic Rods by the Short-Beam Method; American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2002. [Google Scholar]
- Rolland, A.; Quiertant, M.; Khadour, A.; Chataigner, S.; Benzarti, K.; Argoul, P. Experimental investigations on the bond behavior between concrete and FRP reinforcing bars. Constr. Build. Mater. 2018, 173, 136–148. [Google Scholar] [CrossRef]
- Rolland, A.; Argoul, P.; Benzarti, K.; Quiertant, M.; Chataigner, S.; Khadour, A. Analytical and numerical modeling of the bond behavior between FRP reinforcing bars and concrete. Constr. Build. Mater. 2020, 231, 117160. [Google Scholar] [CrossRef]
Environment | pH (t = 0) | pH (t = 240 Days) |
---|---|---|
20-AK | 13.6 | 13.0 |
40-AK | 13.5 | 13.2 |
60-AK | 13.6 | 13.1 |
Environment | Rebars for Tensile Properties | Rebars for ILSS | Rebars for Bond Properties | Rebars for Mass/ Diameter Monitoring | Number of Samples |
---|---|---|---|---|---|
20-AK | 20-AK-D-120D | 5 | |||
20-AK-D-240D | 5 | ||||
20-AK-D-120D | 3 | ||||
20-AK-D-240D | 3 | ||||
20-AK-I-120D | 3 | ||||
20-AK-I-240D | 3 | ||||
20-AK-I-120D | 4 | ||||
20-AK-I-240D | 4 | ||||
20-AK-D-MASS-S | 3 | ||||
20-AK-D-MASS-NS | 1 | ||||
40-AK | 40-AK-D-120D | 5 | |||
40-AK-D-240D | 5 | ||||
40-AK-D-120D | 3 | ||||
40-AK-D-240D | 3 | ||||
40-AK-I-120D | 3 | ||||
40-AK-I-240D | 3 | ||||
40-AK-I-120D | 4 | ||||
40-AK-I-240D | 4 | ||||
40-AK-D-MASS-S | 3 | ||||
40-AK-D-MASS-NS | 1 | ||||
60-AK | 60-AK-D-120D | 5 | |||
60-AK-D-240D | 5 | ||||
60-AK-D-120D | 3 | ||||
60-AK-D-240D | 3 | ||||
60-AK-I-120D | 3 | ||||
60-AK-I-240D | 3 | ||||
60-AK-I-120D | 4 | ||||
60-AK-I-240D | 4 | ||||
60-AK-D-MASS-S | 3 | ||||
60-AK-D-MASS-NS | 1 | ||||
40-T | 40-T-120D | 3 | |||
40-T-240D | 3 | ||||
40-T-120D | 4 | ||||
40-T-240D | 4 | ||||
60-T | 60-T-120D | 3 | |||
60-T-240D | 3 | ||||
60-T-120D | 4 | ||||
60-T-240D | 4 | ||||
TOTAL | 130 |
Temperature | Sample | Mass Gain (%) | |||
---|---|---|---|---|---|
30 Days | 60 Days | 90 Days | 120 Days | ||
20 °C | 20-AK-D-MASS-S-1 | 1.07 | 0.67 | 0.80 | 0.53 |
20-AK-D-MASS-S-2 | 0.82 | 0.44 | 0.49 | 0.27 | |
20-AK-D-MASS-S-3 | 1.39 | 0.55 | 0.50 | 0.28 | |
20-AK-D-MASS-NS-1 | 0.25 | 0.31 | 0.00 | 0.63 | |
40 °C | 40-AK-D-MASS-S-1 | 1.39 | 0.80 | 0.64 | 0.55 |
40-AK-D-MASS-S-2 | 1.42 | 0.77 | 0.60 | 0.57 | |
40-AK-D-MASS-S-3 | 1.32 | 0.47 | 0.45 | 0.53 | |
40-AK-D-MASS-NS-1 | −0.31 | 0.56 | 0.63 | 0.44 | |
60 °C | 60-AK-D-MASS-S-1 | 1.66 | 0.30 | 0.33 | 0.28 |
60-AK-D-MASS-S-2 | 1.14 | 0.37 | 0.23 | 0.28 | |
60-AK-D-MASS-S-3 | 1.13 | 0.45 | 0.39 | 0.28 | |
60-AK-D-MASS-NS-1 | −0.46 | −0.52 | −0.62 | −0.37 |
Temperature | Type of Rebar | Measure No. | Diameter Variation (%) | |||
---|---|---|---|---|---|---|
30 Days | 60 Days | 90 Days | 120 Days | |||
20 °C | Sand-coated | 1 | −2.84 | −0.43 | −2.84 | −2.84 |
2 | −0.72 | 1.73 | −2.88 | −3.45 | ||
3 | −1.43 | 2.50 | −3.93 | −2.29 | ||
Mean | −1.7 ± 0.9 | 1.3 ± 1.3 | −3.2 ± 0.6 | −2.9 ± 0.5 | ||
Non-coated | 1 | 1.79 | −0.81 | −0.81 | −0.57 | |
2 | 1.63 | −0.24 | −0.65 | −1.22 | ||
3 | 2.54 | 0.66 | 0.41 | 0.25 | ||
Mean | 2.0 ± 0.4 | −0.1 ± 0.6 | −0.4 ± 0.6 | −0.5 ± 0.6 | ||
40 °C | Sand-coated | 1 | −1.42 | −0.64 | −4.61 | −5.18 |
2 | −2.14 | 0.00 | −5.71 | −4.29 | ||
3 | −6.12 | −4.22 | −7.21 | −3.40 | ||
Mean | −3.2 ± 2.1 | −1.6 ± 1.9 | −5.9 ± 1.1 | −4.3 ± 0.8 | ||
Non-coated | 1 | 0.81 | −1.61 | −2.02 | −1.69 | |
2 | 1.63 | −1.22 | −0.41 | −0.81 | ||
3 | 1.87 | −1.06 | −1.06 | −0.81 | ||
Mean | 1.4 ± 0.5 | −1.3 ± 0.3 | −1.2 ± 0.7 | −1.1 ± 0.5 | ||
60 °C | Sand-coated | 1 | −1.45 | 1.38 | −2.90 | −1.09 |
2 | −3.62 | −0.51 | −3.99 | −2.17 | ||
3 | −0.73 | 0.36 | −2.19 | −3.28 | ||
Mean | −1.9 ± 1.3 | 0.4 ± 0.8 | −3.2 ± 0.8 | −2.2 ± 0.9 | ||
Non-coated | 1 | 2.46 | −0.33 | 0.82 | 0.16 | |
2 | 1.30 | −1.14 | 1.63 | −0.57 | ||
3 | −0.87 | −3.57 | −1.59 | −1.90 | ||
Mean | 1.0 ± 0.4 | −1.7 ± 1.4 | 0.3 ± 1.4 | −0.8 ± 0.9 |
Localization | Tg | Sample No. | Aging Condition | |||
---|---|---|---|---|---|---|
REF | 20-AK-D | 40-AK-D | 60-AK-D | |||
Close to the surface | Tg (1) (°C) | 1 | 114.7 | 116.9 | 115.1 | 115.3 |
2 | 118.7 | 115.8 | 115.8 | 114.9 | ||
3 | 116.8 | 117.0 | 114.5 | 114.1 | ||
Mean | 117 ± 2 | 116.6 ± 0.6 | 115.1 ± 0.5 | 114.8 ± 0.5 | ||
Tg (2) (°C) | 1 | 128.7 | 128.6 | 126.3 | 129.1 | |
2 | 128.1 | 128.3 | 126.0 | 130.2 | ||
3 | 128.2 | 128.4 | 126.6 | 129.4 | ||
Mean | 128.3 ± 0.2 | 128.4 ± 0.1 | 126.3 ± 0.2 | 129.6 ± 0.4 | ||
Core of the rebar | Tg (1) (°C) | 1 | 115.9 | - | - | 114.5 |
2 | 117.5 | - | - | 115.2 | ||
3 | 116.0 | - | - | 114.9 | ||
Mean | 116.5 ± 0.7 | - | - | 114.9 ± 0.3 | ||
Tg (2) (°C) | 1 | 127.8 | - | - | 129.7 | |
2 | 125.7 | - | - | 129.0 | ||
3 | 129.3 | - | - | 129.8 | ||
Mean | 128 ± 2 | - | - | 129.5 ± 0.4 |
Aging Duration | Sample No. | Elastic Modulus (GPa) | Tensile Strength (MPa) | ||||||
---|---|---|---|---|---|---|---|---|---|
REF | 20-AK-D | 40-AK-D | 60-AK-D | REF | 20-AK-D | 40-AK-D | 60-AK-D | ||
0 days | 1 | 51.3 | 1271 | ||||||
2 | 50.2 | 1272 | |||||||
3 | 50.5 | 1192 | |||||||
4 | 52.9 | 1232 | |||||||
5 | 51.3 | 1233 | |||||||
Mean | 51 ± 1 | 1240 ± 29 | |||||||
120 days | 1 | - | 50.3 | 50.8 | 1082 | 962 | 812 | ||
2 | 51.6 | 48.5 | 51.1 | 1158 | 968 | 792 | |||
3 | 52.0 | 50.2 | 51.5 | 1183 | 965 | 827 | |||
4 | 51.3 | 52.3 | 51.5 | 1157 | 981 | 829 | |||
5 | 51.6 | 52.0 | 53.7 | 1176 | 983 | 811 | |||
Mean | 51.6 ± 0.2 | 51 ± 2 | 52 ± 1 | - | 1151 ± 36 | 972 ± 9 | 814 ± 13 | ||
240 days | 1 | 51.2 | 50.7 | 50.2 | 1065 | 848 | 761 | ||
2 | 53.3 | 51.3 | 48.0 | 1034 | 925 | 642 | |||
3 | 51.9 | 44.8 | 44.7 | 1087 | 653 | 658 | |||
4 | 51.5 | 50.9 | 51.7 | 1083 | 922 | 890 | |||
5 | 51.7 | 50.8 | 43.2 | 1107 | 877 | 625 | |||
Mean | 51.9 ± 0.7 | 49.7 ± −2.5 | 48 ± 4 | - | 1075 ± 24 | 845 ± 100 | 715 ± 99 |
Reference Temperature T0 | Ea/R |
20 °C | 3500 K |
Temperature T1 | Time shift factor TSFT1/T0 |
40 °C | 2.14 |
60 °C | 4.19 |
Time | Sample No. | Interlaminar Shear Strength (MPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
REF | 20-AK-D | 20-AK-I | 40-AK-D | 40-AK-I | 40-T | 60-AK-D | 60-AK-I | 60-T | ||
0 days | 1 | 44.43 | ||||||||
2 | 45.53 | |||||||||
3 | 46.90 | |||||||||
Mean | 46 ± 1 | |||||||||
120 days | 1 | 48.85 | 46.01 | 46.80 | 47.22 | 43.95 | 52.64 | 46.11 | 39.74 | |
2 | 48.90 | 41.85 | 47.06 | 45.27 | 40.22 | 54.01 | 44.90 | 45.01 | ||
3 | 44.37 | 42.27 | 48.27 | 40.58 | 38.74 | 53.06 | 42.43 | 44.32 | ||
Mean | 47 ± 3 | 43 ± 2 | 47.4 ± 0.7 | 44 ± 3 | 41 ± 3 | 53.2 ± 0.6 | 44 ± 2 | 43 ± 3 | ||
240 days | 1 | 49.32 | 42.37 | 49.11 | 40.16 | 40.16 | 45.16 | 47.95 | 39.79 | |
2 | 49.80 | 46.74 | 54.27 | 46.01 | 43.58 | 40.00 | 50.01 | 45.90 | ||
3 | 50.59 | 41.01 | 53.32 | 38.95 | 40.64 | 44.27 | 41.79 | 44.06 | ||
Mean | 49.9 ± 0.6 | 43 ± 3 | 52 ± 3 | 42 ± 4 | 41 ± 2 | 43 ± 3 | 47 ± 4 | 43 ± 3 |
Sample No. | Compressive Strength of Concrete (MPa) | |||||
---|---|---|---|---|---|---|
REF | 20-AK | 40-AK | 60-AK | 40-T | 60-T | |
1 | 29.86 | 37.75 | 37.30 | 26.95 | 34.95 | 24.90 |
2 | 29.35 | 37.75 | 36.30 | 25.70 | 36.70 | 34.25 |
3 | 28.95 | 37.30 | 36.75 | 26.60 | 37.75 | 33.45 |
Mean | 29.4 ± 0.4 | 37.6 ± 0.3 | 36.8 ± 0.5 | 26.4 ± 0.6 | 36 ± 2 | 31 ± 5 |
Time | Sample No. | Bond Strength (MPa) | |||||
---|---|---|---|---|---|---|---|
REF | 20-AK-I | 40-AK-I | 60-AK-I | 40-T | 60-T | ||
0 days | 1 | 6.23 | |||||
2 | 6.61 | ||||||
3 | 5.81 | ||||||
4 | 6.15 | ||||||
Mean | 6.2 ± 0.3 | ||||||
120 days | 1 | 6.29 | 7.66 | 7.47 | 7.81 | 9.92 | |
2 | 7.86 | 8.64 | 7.24 | 6.22 | 9.07 | ||
3 | 7.82 | 7.07 | 5.89 | 10.83 | 9.37 | ||
4 | 7.06 | 9.87 | 6.91 | 7.54 | 9.00 | ||
Mean | 7.3 ± 0.7 | 8 ± 2 | 6.9 ± 0.6 | 8 ± 2 | 9.3 ± 0.4 | ||
240 days | 1 | 8.51 | 7.00 | 6.83 | 5.73 | 7.79 | |
2 | 6.13 | 6.32 | 8.13 | 7.94 | 7.78 | ||
3 | 7.33 | 8.91 | 7.27 | 7.61 | - | ||
4 | 6.91 | 6.76 | 7.71 | 7.07 | 7.33 | ||
Mean | 7.2 ± 0.9 | 7 ± 1 | 7.5 ± 0.5 | 7.1 ± 0.9 | 7.6 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolland, A.; Benzarti, K.; Quiertant, M.; Chataigner, S. Accelerated Aging Behavior in Alkaline Environments of GFRP Reinforcing Bars and Their Bond with Concrete. Materials 2021, 14, 5700. https://doi.org/10.3390/ma14195700
Rolland A, Benzarti K, Quiertant M, Chataigner S. Accelerated Aging Behavior in Alkaline Environments of GFRP Reinforcing Bars and Their Bond with Concrete. Materials. 2021; 14(19):5700. https://doi.org/10.3390/ma14195700
Chicago/Turabian StyleRolland, Arnaud, Karim Benzarti, Marc Quiertant, and Sylvain Chataigner. 2021. "Accelerated Aging Behavior in Alkaline Environments of GFRP Reinforcing Bars and Their Bond with Concrete" Materials 14, no. 19: 5700. https://doi.org/10.3390/ma14195700