Next Article in Journal
Chitosan Gel Sheet Containing Polymeric Micelles: Synthesis and Gelation Properties of PEG-Grafted Chitosan
Previous Article in Journal
Pitting Initiation and Propagation of X70 Pipeline Steel Exposed to Chloride-Containing Environments
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessFeature PaperArticle
Materials 2017, 10(9), 1073; doi:10.3390/ma10091073

Controlled Shrinkage of Expanded Glass Particles in Metal Syntactic Foams

School of Engineering, the University of Newcastle, Callaghan 2308, Australia
*
Author to whom correspondence should be addressed.
Received: 8 August 2017 / Revised: 7 September 2017 / Accepted: 7 September 2017 / Published: 13 September 2017
(This article belongs to the Section Porous Materials)
View Full-Text   |   Download PDF [4543 KB, uploaded 13 September 2017]   |  

Abstract

Metal matrix syntactic foams have been fabricated via counter-gravity infiltration of a packed bed of recycled expanded glass particles (EG) with A356 aluminum alloy. Particle shrinkage was studied and has been utilized to increase the particles’ strength and tailor the mechanical properties of the expanded glass/metal syntactic foam (EG-MSF). The crushing strength of particles could be doubled by shrinking them for 20 min at 700 °C. Owing to the low density of EG (0.20–0.26 g/cm3), the resulting foam exhibits a low density (1.03–1.19 g/cm3) that increases slightly due to particle shrinkage. Chemical and physical analyses of EG particles and the resulting foams were conducted. Furthermore, metal syntactic foam samples were tested in uni-axial compression tests. The stress-strain curves obtained exhibit three distinct regions: elastic deformation followed by a stress plateau and densification commencing at 70–80% macroscopic strain. Particle shrinkage increased the mechanical strength of the foam samples and their average plateau stress increased from 15.5 MPa to 26.7 MPa. View Full-Text
Keywords: metal syntactic foams; expanded glass particles; A356 aluminum alloy; particle shrinkage; infiltration; mechanical characterization metal syntactic foams; expanded glass particles; A356 aluminum alloy; particle shrinkage; infiltration; mechanical characterization
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Al-Sahlani, K.; Taherishargh, M.; Kisi, E.; Fiedler, T. Controlled Shrinkage of Expanded Glass Particles in Metal Syntactic Foams. Materials 2017, 10, 1073.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top