Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.1.1. Phenolic Content
2.1.2. GC-MSD and GC-FID Analysis
2.2. Antifungal Activity of the Tested Essential Oils
2.2.1. Fusarium Graminearum G87
2.2.2. Penicillium Corylophilum CBMF1
2.2.3. Aspergillus Brasiliensis ATCC 16404
2.3. Minimum Inhibitory Concentration
2.4. Antibacterial Inhibition
2.5. Antioxidant Activity Evaluation
2.6. Preliminary Results on the Use of Encapsulated Essential Oils into Chitosan Films as Food Packaging Material
3. Experimental Section
3.1. Materials
Essential Oils
3.2. Microorganisms
3.2.1. Fungi
3.2.2. Bacteria
3.3. Methods of Investigation
3.3.1. Determination of Total Phenolic Content in Vegetable Oils by the Folin–Ciocâlteu Reagent Method
3.3.2. Gas Chromatography-Mass Spectrometry Detector and Flame-Ionized Detector Analysis (GC-MSD/FID)
3.4. Fungi Spore Suspension Preparation
3.5. Antifungal Assay
3.6. Determination of the Minimum Inhibitory Concentration (MIC) of Fungi
3.7. The Agar Disc Diffusion Method
3.8. The Vapor Disc Diffusion Method
3.9. Determination of the Minimum Inhibitory Concentration (MIC) of Bacteria
3.9.1. Agar MIC Testing
3.9.2. Broth Microdilution MIC Testing
3.10. Antioxidant Activity Evaluation
3.10.1. ABTS•+ (2,2’-Azino-bis 3-ethylbenzthiazoline-6-sulfonic Acid) Radical Cation Scavenging Assay
3.10.2. DPPH Radical Scavenging Assay
3.11. The Encapsulation of Essential Oils into the Chitosan Matrix by the Emulsion/Solvent Casting Method
3.12. The Dynamic Light Scattering (DLS) Analysis
3.13. Scanning Electron Microscopy (SEM)
3.14. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pasha, I.; Saeed, F.; Sultan, M.T.; Khan, M.R.; Rohi, M. Recent Developments in Minimal Processing: A Tool to Retain Nutritional Quality of Food. Crit. Rev. Food Sci. Nutr. 2014, 54, 340–351. [Google Scholar] [CrossRef] [PubMed]
- NOTIZIE DALLA WHO. Food safety and foodborne illness. Biochim. Clin. 2002, 26, 39. [Google Scholar]
- WHO; WIPO; WTO. Antimicrobial Resistance: How to Foster Innovation, Access and Appropriate Use of Antibiotics? In Proceedings of the a Joint Technical Symposium by WHO, WIPO and WTO, New Conference Hall, WIPO Headquarters, Geneva, Switzerland, 25 October 2016.
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Helander, I.M.; Alakomi, H.-L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; von Wright, A. Characterization of the action of selected essential oil components on Gram-Negative Bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Potzernheim, M.C.L.; Bizzo, H.R.; Silva, J.P.; Vieira, R.F. Chemical characterization of essential oil constituents of four populations of Piper aduncum L. from Distrito Federal, Brazil. Biochem. Syst. Ecol. 2012, 42, 25–31. [Google Scholar] [CrossRef]
- Colecio-Juárez, M.C.; Rubio-Núñez, R.E.; Botello-Álvarez, J.E.; Martínez-González, G.M.; Navarrete-Bolaños, J.L.; Jiménez-Islas, H. Characterization of Volatile Compounds in the Essential Oil of Sweet Lime (Citrus limetta Risso). Chilean J. Agric. Res. 2012, 72, 275–280. [Google Scholar] [CrossRef]
- Santiago, J.A.; Cardoso, M.G.; Figueiredo, A.C.S.; Moraes, J.C.; Assis, F.A.; Teixeira, M.L.; Santiago, W.D.; Sales, T.A.; Camargo, K.C.; Nelson, D.L. Chemical Characterization and Application of the Essential Oils from Chenopodium ambrosioides and Philodendron bipinnatifidum in the Control of Diabrotica speciosa (Coleoptera: Chrysomelidae). Am. J. Plant Sci. 2014, 5, 3994–4002. [Google Scholar] [CrossRef]
- Dhole, V.R.; Sitharaman, B. Characterization and Identification of Essential Oil Components by GC-MS. Available online: https://tools.thermofisher.com/content/sfs/posters/Pittcon12_2160-3_VRDhole_EssentialOils(1).pdf (accessed on 4 January 2017).
- Wany, A.; Kumar, A.; Nallapeta, S.; Jha, S.; Nigam, V.K.; Pandey, D.M. Extraction and characterization of essentail oil components based on geraniol and citronellol from Java Citronella (Cymbopogon winterianus Jowitt). Plant Growth Regul. 2014, 73, 133–145. [Google Scholar] [CrossRef]
- Chukwuka, K.S.; Ojo, O.M. Extraction and Characterization of Essential Oils from Tithonia diversifolia (Hemsl.) A. Gray. Am. J. Essent. Oils Nat. Prod. 2014, 1, 1–5. [Google Scholar]
- Labra, M.; Miele, M.; Ledda, B.; Grassi, F.; Mazzei, M.; Sala, F. Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Sci. 2004, 167, 725–731. [Google Scholar] [CrossRef]
- Jalali-Heravi, M.; Zekavat, B.; Sereshti, H. Characterization of essential oil components of Iranian geranium oil using gas chromatography–mass spectrometry combined with chemometric resolution techniques. J. Chromatogr. A 2006, 1114, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, I.; Oprean, R. Comparative Study of Essential Oil from Two Species of Mint Grown in Orăştie. Farmacia 2014, 62, 169–182. [Google Scholar]
- Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med. 2006, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Monographs on Selected Medicinal Plants; WHO: Geneva, Switzerland, 2002; Volume 2. [Google Scholar]
- Krisch, J.; Tserennadmid, R.; Vágvölgyi, C. Essential Oils against Yeasts and Moulds Causing Food Spoilage in SCIENCE against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Vilas, A., Ed.; ©FORMATEX, 2011; pp. 1135–1142. Available online: http://www.formatex.info/microbiology3/book/1135-1142.pdf (accessed on 4 January 2017).
- Yaouba, A.; Tatsadjieu, N.L.; Michel, J.D.P.; Etoa, F.X.; Mbofung, C.M. Antifungal properties of essential oils and some constituents to reduce foodborne pathogen. J. Yeast Fungal Res. 2010, 1, 1–8. [Google Scholar]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in wood-comparison of different estimation methods. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Standard NF ISO 14715. Huile Essentielle de thym à Thymol, Type Espagne (Thymus zygis (Loefl.) L.). Available online: http://agris.fao.org/agris-search/search.do?recordID=XF2016044187 (accessed on 4 January 2017).
- Standard NF ISO 855. Huile Essentielle de Citron (Citrus limon (L.) Burm. F.), Obtenue par Expression. 2004. Available online: https://www.boutique.afnor.org/norme/nf-iso-855/huile-essentielle-de-citron-citrus-limon-l-burm-f-obtenue-par-expression/article/655942/fa102658 (accessed on 5 January 2017).
- Standard NF ISO 1342. Huile Essentielle de Rosmarin (Rosmarinus officinalis L.). 2012. Available online: https://www.boutique.afnor.org/norme/nf-iso-1342/huile-essentielle-de-romarin-rosmarinus-officinalis-l/article/667940/fa169820 (accessed on 5 January 2017).
- Standard NF ISO 3141. Huile Essentielle de Feuilles de Giroflier [Syzygium aromaticum. (L.) Merr. et Perry, syn. Eugenia caryophyllus (Sprengel) Bullock et S. Harrison]. 1997. Available online: http://www.iso.org/iso/fr/home/store/catalogue_tc/catalogue_detail.htm?csnumber=8310 (accessed on 5 January 2017).
- Standard NF ISO 4730. Confirmed in 2012 Oil of Melaleuca, terpinen-4-ol Type (Tea Tree Oil). 2004. Available online: https://www.iso.org/obp/ui/#iso:std:iso:4730:ed-2:v1:en (accessed on 5 January 2017).
- D’Acampora Zellner, B.; Dugo, P.; Dugo, G.; Mondello, L. Analysis of Essential Oils. In Handbook of Essential Oils: Science, Technology, and Applications; Baser, K.H.C., Buchbauer, G., Eds.; CRC/Taylor & Francis: Boca Raton, FL, USA, 2010; Chapter 6; pp. 151–185. Available online: https://ttngmai.files.wordpress.com/2012/09/handbookofessentionaloil.pdf (accessed on 5 January 2017).
- Bentayeb, K.; Vera, P.; Rubio, C.; Nerín, C. The additive properties of Oxygen Radical Absorbance Capacity (ORAC) assay: The case of essential oils. Food Chem. 2014, 148, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Omidbeygi, M.; Barzegar, M.; Hamidi, Z.; Naghdibadi, H. Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control 2007, 18, 1518–1523. [Google Scholar] [CrossRef]
- Abdollahzadeh, E.; Rezaei, M.; Hosseini, H. Antibacterial activity of plant essential oils and extracts. The role of thyme essential oil, nisin and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control 2014, 35, 177–183. [Google Scholar] [CrossRef]
- Nowak, A.; Kalemba, D.; Krala, L.; Piotrowska, M.; Czyzowska, A. The effects of thyme (Thymus vulgaris) and rosemary (Rosmarinus officinalis) essential oils on Brochothrix thermosphacta and on the shelf life of beef packaged in high-oxygen modified atmosphere. Food Microbiol. 2012, 32, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Bill, M.; Sivakumar, D.; Korsten, L.; Thompson, A.K. The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop Prot. 2014, 64, 159–167. [Google Scholar] [CrossRef]
- Stević, T.; Berić, T.; Šavikin, K.; Soković, M.; Gođevac, D.; Dimkić, I.; Stanković, S. Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Ind. Crops Prod. 2014, 55, 116–122. [Google Scholar] [CrossRef]
- Goñi, M.G.; Tomadoni, B.; Moreira, M.R.; Roura, S.I. Application of tea tree and clove essential oil on late development stages of Butterhead lettuce. Impact on microbiological quality. LWT Food Sci. Technol. 2013, 54, 107–113. [Google Scholar] [CrossRef]
- Shao, X.; Cao, B.; Xu, F.; Xie, S.; Yu, D.; Wang, H. Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biol. Technol. 2015, 99, 37–43. [Google Scholar] [CrossRef]
- Sebaaly, C.; Jraij, A.; Fessi, H.; Charcosset, C.; Greige-Gerges, H. Preparation and characterization of clove essential oil loaded liposomes. Food Chem. 2015, 178, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Ulei Cuisoare 10 mL FARES—Farmacia Verde—Util21.ro. Available online: http://farmaciaverde.util21.ro/produs_12853_ulei-cuisoare-10.html (accessed on 4 January 2017).
- Jiang, Y.; Wu, N.; Fu, Y.-J.; Wang, W.; Luo, M.; Zhao, C.-J.; Zu, Y.-G.; Liu, X.-L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Barretoa, H.M.; Filhoa, E.C.S.; Limab, E.O.; Coutinhoc, H.D.M.; Morais-Bragac, M.F.B.; Tavaresc, C.C.A.; Tintinoc, S.R.; Regod, J.V.; de Abreue, A.P.L.; Lustosae, M.C.G.; et al. Chemical composition and possible use as adjuvant of the antibiotic therapy of the essential oil of Rosmarinus officinalis L. Ind. Crops Prod. 2014, 59, 290–294. [Google Scholar] [CrossRef]
- Bomfim, N.S.; Nakassugi, L.P.; Oliveira, J.F.P.; Kohiyama, C.Y.; Mossini, S.A.G.; Grespan, R.; Nerilo, S.B.; Mallmann, C.A.; Filho, B.A.A.; Machinski, M., Jr. Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem. 2015, 166, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, L.; González-Martínez, C.; Chiralt, A.; Cháfer, M. Physical and antimicrobial properties of chitosan tea tree essential oil composite films. J. Food Eng. 2010, 98, 443–452. [Google Scholar] [CrossRef]
- Kwiecinski, J.; Eick, S.; Wojcika, K. Effects of tea tree Melaleuca alternifolia oil on Staphylococcus aureus in biofilms and stationary growth phase. Int. J. Antimicrob. Agents 2009, 33, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, N.A.; Hammer, K.A.; Riley, T.V.; Belkum, A.V.; Carson, C.F. Effect of habituation to tea tree (Melaleuca alternifolia) oil on the subsequent susceptibility of Staphylococcus spp. to antimicrobials, triclosan, tea tree oil, terpinen-4-ol and carvacrol. Int. J. Antimicrob. Agents 2013, 41, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Wang, H.; Xu, F.; Cheng, S. Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biol. Technol. 2013, 77, 94–101. [Google Scholar] [CrossRef]
- Ulei Ti-Tree 10 mL Fares Trading—Farmacia Verde—util21.ro. Available online: http://farmaciaverde.util21.ro/produs_5564_ulei-ti-tree-10ml-fares-trading.html (accessed on 4 January 2017).
- Li, P.; Zhang, H.; Chen, X.; Qiu, D.; Guo, L. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Virology 2015, 481, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.R.; Abbaszadeh, A. Antifungal efficacy of thymol carvacrol eugenol and menthol as alternative agents to control the growth of food relevant fungi. J. Mycol. Med. 2014, 24, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Marın, S.; Velluti, A.; Ramos, A.J.; Sanchis, V. Effect of essential oils on zearalenone and deoxynivalenol production by Fusarium graminearum in non-sterilized maize grain. Food Microbiol. 2004, 21, 313–318. [Google Scholar] [CrossRef]
- Varga, J.; Frisvad, J.C.; Kocsubé, S.; Brankovics, B.; Tóth, B.; Szigeti, G.; Samson, R.A. New and revisited species in Aspergillus section. Nigri. Stud. Mycol. 2011, 69, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, D.G.; Doe, J. Essential Oil Desk Reference, 4th ed.; Life Science Publishing: Lehi, UT, USA, 2007; p. 360. [Google Scholar]
- Ulei Rozmarin 10 mL Fares. Available online: http://farmaciaverde.util21.ro/produs_8996_ulei-rozmarin-10.html (accessed on 4 January 2017).
- Feng, W.; Chen, J.; Zheng, X.; Liu, Q. Thyme oil to control Alternaria alternata in vitro and in vivo as fumigant and contact treatments. Food Control 2011, 22, 78–81. [Google Scholar] [CrossRef]
- Rajkovic, K.; Pekmezovic, M.; Barac, A.; Nikodinovic-Runic, J.; Arsenijević, V.A. Inhibitory effect of thyme and cinnamon essential oils on Aspergillus flavus: Optimization and activity prediction model development. Ind. Crops Prod. 2015, 65, 7–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S.Y. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Mith, H.; Dure, R.; Delcenserie, V.; Zhiri, A.; Daube, G.; Clinquart, A. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food. Sci. Nutr. 2014, 2, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Proestos, C.; Lytoudi, K.; Mavromelanidou, O.K.; Zoumpoulakis, P.; Sinanoglou, V.J. Antioxidant Capacity of Selected Plant Extracts and Their Essential Oils. Antioxidants 2013, 2, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Vasile, C.; Stoleru, E.; Irimia, A.; Zaharescu, T.; Dumitriu, R.P.; Ioanid, G.E.; Munteanu, B.S. Report of the 3-rd RCM Coordinated Research Project: Application of Radiation technology in the Development of Advanced Packaging Materials for Food Products. Chapter 15. Ionizing Radiation and Plasma Discharge Mediating Covalent Linking of Bioactive Compounds onto Polymeric Substrate to Obtain Stratified Composites for Food Packing. Available online: http://www-naweb.iaea.org/napc/iachem/working_materials/F22063%20APA416.pdf (accessed on 4 January 2017).
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Janssen, A.M.; Chin, N.L.; Scheffer, J.J.; Baerheim Svendsen, A. Screening for antimicrobial activity of some essential oils by the agar overlay technique. Pharm Weekbl Sci. 1987, 9, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Krisch, J.; Tserennadmid, R.; Vágvölgyi, C. Essential oils against yeasts and moulds causing food spoilage. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 1135–1142. [Google Scholar]
- Kacem, N.; Roumy, V.; Duhal, N.; Merouane, F.; Neut, C.; Christen, P.; Hostettmann, K.; Rhouati, S. Chemical composition of the essential oil from Algerian Genista quadriflora Munby and determination of its antibacterial and antifungal activities. Ind. Crops Prod. 2016, 90, 87–93. [Google Scholar] [CrossRef]
- Peixoto, L.R.; Rosalen, P.L.; Ferreira, G.L.S.; Freires, I.A.; de Carvalho, F.G.; Castellano, L.R.; de Castro, R.D. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Arch. Oral Biol. 2017, 73, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Mathela, C.S.; Tewari, G.; Singh, D.; Tewari, A.K.; Bisht, K.S. Chemical composition and antifungal activity of essential oils from three Himalayan Erigeron species. LWT Food Sci. Technol. 2014, 56, 278–283. [Google Scholar] [CrossRef]
- Frankova, A.; Smid, J.; Bernardos, A.; Finkousova, A.; Marsik, P.; Novotny, D.; Legarova, V.; Pulkrabek, J.; Kloucek, P. The antifungal activity of essential oils in combination with warm air flow against postharvest phytopathogenic fungi in apples. Food Control 2016, 68, 62–68. [Google Scholar] [CrossRef]
- Boubaker, H.; Karim, H.; El Hamdaoui, A.; Msanda, F.; Leach, D.; Bombarda, I.; Vanloot, P.; Abbad, A.; Boudyach, E.H.; Aoumar, A.A.B. Chemical characterization and antifungal activities of four Thymus species essential oils against postharvest fungal pathogens of citrus. Ind. Crops Prod. 2016, 86, 95–101. [Google Scholar] [CrossRef]
- Tolba, H.; Moghrani, H.; Benelmouffok, A.; Kellou, D.; Maachi, R. Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity. J. Mycol. Méd. 2015, 25, e128–e133. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Rajendran, S.; Srivastava, A.; Sharma, S.; Kundu, B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J. Biosci. Bioeng. 2016. [Google Scholar] [CrossRef] [PubMed]
- Ortez, J.H. Disk Diffusion Testing. In Manual of Antimicrobial Susceptability Testing; Coyle, M.B., Ed.; Antimicrobial Susceptibility Testing. A Self-study Program; American Society of Microbiology: Seattle, WA, USA, 2005; Chapter 4; pp. 39–53. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard—11th Edition; CLSI document M02-A11 (ISBN 1-56238-781-2 [Print]; ISBN 1-56238-782-0 [Electronic]); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Goñi, P.; López, P.; Sánchez-Jarabo, C.; Nerín, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 2009, 116, 982–989. [Google Scholar] [CrossRef]
- Rubalya Valantina, S.; Neelamegam, P. Selective ABTS and DPPH- radical scavenging activity of peroxide from vegetable oils. Int. Food Res. J. 2015, 22, 289–294. [Google Scholar]
- Lupascu, F.G.; Dragostin, O.M.; Foia, L.; Lupascu, D.; Profire, L. The Synthesis and the Biological Evaluation of New Thiazolidin-4-one Derivatives Containing a Xanthine Moiety. Molecules 2013, 18, 9684–9703. [Google Scholar] [CrossRef] [PubMed]
- Stoleru, E.; Munteanu, S.B.; Dumitriu, R.P.; Coroaba, A.; Drobota, M.; Zemljic, F.L.; Pricope, G.M.; Vasile, C. Polyethylene materials with multifunctional surface properties by electrospraying chitosan/vitamin E formulation destined to biomedical and food packaging applications. Iran Polym. J. 2016, 25, 295–308. [Google Scholar] [CrossRef]
Oil Type | Total Phenolic Content (mg·GAE/g·DW) * |
---|---|
Thyme | 0.349 |
Clove | 1.136 |
Rosemary | 0.000 |
Tea Tree | 0.034 |
Class of Compounds | Main Compounds |
---|---|
Monoterpenes (C10 with 2 isoprene units) | Borneol, Camphene, Camphor, Carene, Carvol, Citral, p-Cymene, Eucalyptol, Fenchone, Geraniol, Limonene, Linalol, Menthone, Myrcene, Ocimene, Phellandrene, Piperitol, Terpinene, Thujene, Thymol |
Phenylpropanoides (C6 with C3 side chains) | Apiole, Chavicol, Cinnamaldehyde, Estragole, Eugenol, Myristicin |
Sesquiterpenes (C15 with 3 isoprene units) | Amorphene, Aromoadendrene, Cadinene, Caryophyllene, Cubebene, Elemene, Farnesene, Globulol, Gurgujene, Isolendene, Maaliene, Panasinsen, Selinene, Spathulenol |
Chemical Compound | Thyme | Clove | Rosemary | Tea Tree |
---|---|---|---|---|
ORAC (μTE/100 g) ** | 15,960 | 1,078,700 | 330 | |
α-Thujene | 0.4 | |||
α-Pinene | 1.6 | 11.4 | 3.9 | |
Camphene | 1.0 | 5.0 | ||
β-Pinene | 9.4 (<9) | |||
β-Myrcene | 2.5 | 2.5 | ||
2-Carene | 2.3 | 10.3 | ||
p-Cymene | 22.5 | 1.3 | 2.8 | |
Limonene | 2.6 | 3.6 | ||
Eucalyptol | 43.1 | 2.3 | ||
γ-Terpinene | 7.9 | 16.3 | ||
α-Terpinene | 4.1 (>5) | |||
Linalol | 5.6 | |||
Camphor | 11.3 | |||
Borneol | 1.1 | 3.0 | ||
4-Terpineol | 38.7 | |||
α-Terpineol | 1.8 | 4.6 | ||
Thymol | 43.1 | |||
Carvacrol | 2.7 | |||
Eugenol | 85.7 | |||
β-Caryophyllene | 2.3 | 4.5 | 3.2 | 2.2 |
α-Caryophyllene | 0.9 | |||
Aromadendrene | 1.1 | |||
Ledene | 1.1 | |||
Eugenol acetate | 7.9 (>8) | |||
δ-Cadinene | 0.9 | |||
Caryophyllene oxide | 0.4 |
Essential Oil Fungal Strain | Thyme (ppm) | Clove (ppm) | Rosemary (ppm) | Tea Tree (ppm) |
---|---|---|---|---|
Penicillium corylophilum CBMF1 | 174.41 | 465.11 | NA | 930.23 |
Fusarium graminearum G87 | 162.79 | 930.23 | NA | 1395.34 |
Aspergillus brasiliensis ATCC 16404 | 116.27 | 697.67 | NA | 813.95 |
Essential Oil | Vapor Phase Method | ||
---|---|---|---|
S. aureus | E. coli | L. monocytogenes | |
Thyme | 56.8 ± 6.9 | 28.3 ± 1.3 | 48.5 ± 4.9 |
Clove | 14.2 ± 2.6 | 0 ± 0 | 0 ± 0 |
Rosemary | 0 ± 0 | 0 ± 0 | NA |
Tea tree | 0 ± 0 | 0 ± 0 | 0 ± 0 |
EO | Method | MICs Value for S. aureus | MICs Value for E. coli | ||||
---|---|---|---|---|---|---|---|
Concentration of Oil (v/v) | Concentration of Oil (v/v) | ||||||
0.5% | 5% | 100% | 0.5% | 5% | 100% | ||
Tween-20 | DMSO | Ethanol | Tween-20 | DMSO | Ethanol | ||
Thyme | Agar | 1.56 | 12.50 | 1.56 | 3.13 | 6.25 | 1.56 |
Broth | 0.39 | 0.78 | 3.13 | 3.13 | 3.13 | 3.13 | |
Clove | Agar | 3.13 | 12.50 | 12.50 | 12.50 | 12.50 | 3.13 |
Broth | 6.25 | 3.13 | 3.13 | 6.25 | 6.25 | 6.25 | |
Tea Tree | Agar | 6.25 | 25.00 | 25.00 | 12.50 | 12.50 | 12.50 |
Broth | 0.80 | 25.00 | 25.00 | 12.50 | 25.00 | 25.00 |
Sample | Z First Peak, d (nm) | Z Average (nm) | PDI |
---|---|---|---|
Chitosan | 5 | 850 | 0.997 |
Thyme (Thymus Vulgaris L.) | 11.5 and 350 | 6190 | 0.735 |
Cloves (Eugenia caryophyllus from dried floral buds of Syzygium aromaticum) | 10.5 | 8790 | 1.0 |
Rosemary (Rosmarinus officinalis L.) | 60 | 2550 | 1.0 |
Tea tree (Melaleuca alternifolia aetheroleum) | 15 and 70 | 6360 | 1.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasile, C.; Sivertsvik, M.; Miteluţ, A.C.; Brebu, M.A.; Stoleru, E.; Rosnes, J.T.; Tănase, E.E.; Khan, W.; Pamfil, D.; Cornea, C.P.; et al. Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging. Materials 2017, 10, 45. https://doi.org/10.3390/ma10010045
Vasile C, Sivertsvik M, Miteluţ AC, Brebu MA, Stoleru E, Rosnes JT, Tănase EE, Khan W, Pamfil D, Cornea CP, et al. Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging. Materials. 2017; 10(1):45. https://doi.org/10.3390/ma10010045
Chicago/Turabian StyleVasile, Cornelia, Morten Sivertsvik, Amalia Carmen Miteluţ, Mihai Adrian Brebu, Elena Stoleru, Jan Thomas Rosnes, Elisabeta Elena Tănase, Waqas Khan, Daniela Pamfil, Călina Petruţa Cornea, and et al. 2017. "Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging" Materials 10, no. 1: 45. https://doi.org/10.3390/ma10010045
APA StyleVasile, C., Sivertsvik, M., Miteluţ, A. C., Brebu, M. A., Stoleru, E., Rosnes, J. T., Tănase, E. E., Khan, W., Pamfil, D., Cornea, C. P., Irimia, A., & Popa, M. E. (2017). Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging. Materials, 10(1), 45. https://doi.org/10.3390/ma10010045