Next Article in Journal
Exergy Analysis of the Supply of Energy and Material Resources in the Swedish Society
Previous Article in Journal
Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Energies 2016, 9(9), 706; doi:10.3390/en9090706

Radial Force-Current Characteristics Analysis of Three-Pole Radial-Axial Hybrid Magnetic Bearings and Their Structure Improvement

School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
*
Author to whom correspondence should be addressed.
Academic Editor: K.T. Chau
Received: 25 May 2016 / Revised: 7 August 2016 / Accepted: 25 August 2016 / Published: 2 September 2016
View Full-Text   |   Download PDF [3641 KB, uploaded 2 September 2016]   |  

Abstract

The radial stator of three-pole radial-axial hybrid magnetic bearings (HMB) has three magnetic poles and the three magnetic poles are driven by a three-phase converter, so the three-pole radial-axial HMB has the advantages of compact structure, low cost, low power consumption and so on. However, as the sum of three-phase current is zero and the three radial magnetic poles are asymmetric, the relationship between the radial suspension force and the control current is nonlinear. In this paper, firstly a mathematical model of three-pole radial-axial HMB is built based on the equivalent magnetic circuit method. The radial force-current characteristics are then analyzed based on the non-linearized model. The calculation, finite element method (FEM) and experimental results show that the suspension force on the x-axis is a quadratic function of the control current, but the suspension force on the y-axis is linear with control current. Besides, the suspension forces on the two radial axes are coupled with each other. Then, in order to decrease the nonlinearity and coupling of radial force-current characteristics, the six-pole radial-axial HMB is proposed based on the above analyses. The radial force-current characteristics of the six-pole radial-axial HMB are also analyzed based on the non-linearitzed model and are validated by 3-D FEM analysis. The calculation and FEM results have shown that the radial force-current relationship of a six-pole radial-axial HMB is linear and there is no coupling between the two radial axes. View Full-Text
Keywords: magnetic bearings; three-pole; suspension force-current characteristics; three-phase converter driving magnetic bearings; three-pole; suspension force-current characteristics; three-phase converter driving
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Ju, J.; Zhu, H. Radial Force-Current Characteristics Analysis of Three-Pole Radial-Axial Hybrid Magnetic Bearings and Their Structure Improvement. Energies 2016, 9, 706.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top