You are currently viewing a new version of our website. To view the old version click .
Energies
  • Article
  • Open Access

28 January 2016

Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges

,
,
,
and
1
Computer Science Department, Internet Interdisciplinary Institute, Open University of Catalonia, 08018 Barcelona, Spain
2
Instituto de Desarrollo Tecnológico para la Industria Química, Universidad Nacional del Litoral, CONICET, 3000 Santa Fe, Argentina
3
Statistics and Operations Research Department, Public University of Navarre, 31006 Pamplona, Spain
4
Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA

Abstract

Current logistics and transportation (L&T) systems include heterogeneous fleets consisting of common internal combustion engine vehicles as well as other types of vehicles using “green” technologies, e.g., plug-in hybrid electric vehicles and electric vehicles (EVs). However, the incorporation of EVs in L&T activities also raise some additional challenges from the strategic, planning, and operational perspectives. For instance, smart cities are required to provide recharge stations for electric-based vehicles, meaning that investment decisions need to be made about the number, location, and capacity of these stations. Similarly, the limited driving-range capabilities of EVs, which are restricted by the amount of electricity stored in their batteries, impose non-trivial additional constraints when designing efficient distribution routes. Accordingly, this paper identifies and reviews several open research challenges related to the introduction of EVs in L&T activities, including: (a) environmental-related issues; and (b) strategic, planning and operational issues associated with “standard” EVs and with hydrogen-based EVs. The paper also analyzes how the introduction of EVs in L&T systems generates new variants of the well-known Vehicle Routing Problem, one of the most studied optimization problems in the L&T field, and proposes the use of metaheuristics and simheuristics as the most efficient way to deal with these complex optimization problems.

1. Introduction

Logistics and transportation (L&T) activities represent a key sector in worldwide economies, and are a significant contributor to social and economic progress in modern societies. The prevalence of the L&T industry is due to its constant growth and impact in terms of regional Gross Domestic Product (GDP). In particular, road L&T activities using motorized vehicles have significantly increased in response to the rise of globalization and commercial interchanges among countries. With the aim of making them more efficient, L&T systems have been widely studied by the Operations Research/Computer Science (OR/CS) communities for decades. Due to its potential applications to real-life operations, one of the most recurrent topics in the L&T literature is that of modeling and optimizing tour assignments of vehicles. This is known as the Vehicle Routing Problem (VRP) [1]. Numerous variants of this problem have been addressed over the last years. The basic variant is the so-called Capacitated VRP (CVRP), where each customer has a given demand that has to be satisfied without exceeding a maximum vehicle capacity. The VRP with Time Windows extends the CVRP by adding time windows to the depot and the customers. To account for additional real world aspects, the classical VRP has been redefined in various manners that are often called Rich VRPs [2] or Multi-attribute VRPs [3]. Despite the extensive literature in the VRP area, most of the existing contributions have assumed that the fleet to be managed comprises only internal combustion engine vehicles (ICEVs), which is not exactly the current picture.
A large percentage of the oil consumed in regions such as Europe or the USA is used in transport, while road transport accounts for an important percentage of CO2 emissions of the overall transport activity. Furthermore, the whole transport sector causes about 28% of the total greenhouse gas (GHG) emissions in countries such as the USA. In order to mitigate this situation, one possibility is to incorporate emission costs as an objective to be minimized in routing models, thus trading off environmental and economic goals [4,5]. A different approach is the utilization of less polluting means of transport such as plug-in hybrid electric vehicles and electric vehicles (EVs), whose specific characteristics have to be included in adequate routing models. In effect, as part of the initiative to improve the local air quality, modern cities encourage fleets of vehicles to adopt alternative technologies, such as EVs. Several factors are promoting the use of these technologies, including: (i) companies receive incentives to reduce their carbon footprint; (ii) high variability of oil-based products and long-term cost risk associated with dependence on oil-based energy sources; (iii) availability of government subsidies to reduce acquisition cost; and (iv) advances in alternative energy technologies (such as EVs), which have potential for a more environmentally sustainable solutions at a cost that is starting to be competitive. From both an environmental and energy standpoints, the use of EVs should be a first priority for the reduction of primary energy consumption. Although higher concerns are the advantages of EVs in terms of efficiency and flexibility in the use of energy, the EV technology is currently facing several weak points, which can be summarized as follows: (i) the low energy density of batteries compared to the fuel of ICEVs; (ii) the long recharge times of EVs batteries compared to the relatively fast process of refueling a tank in ICEVs; and (iii) the scarcity of public and/or private charging stations for EV batteries. In earlier years, EVs failed because of excessive battery prices and very short driving ranges. As EVs have become one of the major research areas in the automotive sector, the magnitude of these problems has been notably diminished. Although the replacement of conventional ICEVs with EVs is not profitable under most operation scenarios given the current cost conditions, the availability of increasingly long-lived batteries, the trends for rising fuel costs, and lower EV purchase costs are likely to change the picture [6]. Figure 1 shows the noticeable increase experienced during the last years in the number of EV-related articles published in Scopus-indexed journals, which proves the growing interest that the use of EVs is arising among researchers and practitioners.
Figure 1. Evolution of electric vehicle (EV) related publications in Scopus-indexed journals.
Accordingly, this paper identifies and reviews, from an OR/CS perspective, several open research challenges related to the introduction of EVs in L&T activities, including the following dimensions: (a) environmental-related issues; (b) strategic and planning challenges associated with “standard” EVs and with hydrogen-based EVs; and (c) emerging operational issues related to the use of EVs in VRPs. Table 1 summarizes the different research challenges that have been identified in our study and that will be conveniently described and reviewed in different sections of this manuscript. For a better understanding, these research issues have been classified in three dimensions: environmental, strategic and planning, and operational. The paper also analyzes in detail how the introduction of EVs in L&T systems generates new VRP variants, i.e., in the context of the Green VRP, this work points out some of the most promising research lines yet to be fully explored. Finally, the paper also includes a discussion on which optimization approaches can better contribute to deal with these open and difficult research challenges.
Table 1. Open Operations Research/Computer Science (OR/CS) research challenges associated with the use of EVs.
The remainder of this paper is structured as follows: Section 2 reviews and analyzes some of the environmental issues related to the use of EVs. Section 3 builds on Section 2 and identifies the main strategic and planning challenges related to the introduction of EVs in “green” L&T activities. Section 4 extends Section 2 and Section 3 by focusing on how the introduction of hybrid fleets with both ICEVs and EVs imposes new operational challenges and exploring opportunities on the popular VRP. Section 5 points out some new solving approaches that allow facing these challenges in an efficient way. Section 6 provides an overview of other related emerging issues, such as lifecycle cost analysis and the use of EVs in rural areas and to confront natural disasters. Finally, Section 7 summarizes the main contributions of this paper.

5. Solving Approaches for VRPs with EVs

As discussed in the previous sections, the introduction of EVs in freight fleets imposes a number of strategic and operational challenges that must be efficiently addressed with the use of novel methods and approaches. This is particularly true for VRP models, which can be classified into three levels according to their degree of realism (Figure 2). The classical-basic VRP models are mainly theoretical models that allow the development of mathematical approaches, either if they use exact or approximate solving methods. These models are used to test solving methods in controlled environments, which allows assessing their performance before being used in practical applications. The classical-advanced VRP models are characterized by a higher level of realism, i.e., large-scale problems, multi-objective functions, integrated routing and logistics. Examples of the latter are: VRPs combined with packing [99], allocation, inventory management [100], etc. More advanced and complex VRP variants are included in this category. Usually, these problems have been solved by metaheuristic approaches, such as Genetic Algorithms, Iterated Local Search, Ant Colony Optimization, Simulated Annealing, etc. Most of the existing work in the VRP literature so far deals with these two classical types of models. Recently, however, and due to both the maturity of existing exact and metaheuristic methods as well as to new business needs, new Rich VRP models are being considered. The solving methods for these models combine different exact and metaheuristic approaches (matheuristics) [101] or even simulation with metaheuristics (simheuristics) [102]. Simheuristics allow considering uncertainty both in the objective function and the constraints of a VRP model, thus making these models a more accurate representation of real-life routing distribution systems. These hybrid methods not only can deal with uncertainty and real-time decision making [103], but they can also consider aspects such as richer objective functions (including environmental costs), dynamism [104], diversity of vehicle driving ranges, multi-periodicity in the distribution activity, integration with other supply chain components, etc.
Figure 2. Classification of Vehicle Routing Problem (VRP) models according to their degree of realism.

7. Conclusions

This paper has reviewed some of the existing literature related to the introduction of electric vehicles in road transportation, paying special attention to environmental issues; the emerging strategic and operational challenges; the use of hydrogen electric vehicles as an alternative to other types of electric vehicles; and the new variants of the popular vehicle routing problem that arise as a consequence of introducing electric vehicles in the distribution fleets. From this analysis, it becomes evident that the use of sustainable energy sources in road logistics and transportation is more necessary than ever, and constitutes a critical factor for the evolution of an economically and environmentally stable world. The incorporation of electric vehicles in the road distribution activities, especially in urban areas, shows a promising trend yet to be explored in its full potential. However, the expanded use of electric vehicles raises a number of concerns and challenges that complicate planning efforts. From an operational research point of view, the following strategic and operational challenges can be highlighted: (a) the development of infrastructure networks for battery recharging/swapping, including the number, location, type, and capacity of the associated stations; (b) the size and mix composition of hybrid fleets with both traditional vehicles, hybrid electric vehicles, and pure electric vehicles; (c) the severe feasibility constraints imposed using heterogeneous fleets of vehicles with different driving ranges; (d) the additional time-window constraints related to short driving ranges; and (e) the economic impact of the introduction of electric vehicles over the entire supply chain. The development of new optimization and hybrid optimization-simulation methods to efficiently cope with these challenges, including dynamic scenarios and scenarios with uncertainty, is a necessary step to promote the desirable shift towards more sustainable energy sources in the logistics and transportation arena.

Acknowledgments

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P and TRA2015-71883-REDT), FEDER, and the CYTED Program (CYTED2014-515RT0489). Likewise, we want to acknowledge the support received by the Catalan Government (2014-CTP-00001) and the CAN Foundation (CAN2014-3758 and CAN2015-70473).

Author Contributions

Angel Juan had the original idea for the study and coordinated the manuscript development. Javier Faulin was the main contributor of the section about environmental issues. Jesica de Armas analyzed the strategic and operational challenges related to the introduction of EVs. Scott E. Grasman provided much of the insight related to hydrogen-based EVs. Finally, Carlos Mendez was in charge of developing most of the parts related to the new EV-based variants for the Vehicle Routing Problem.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Toth, P.; Vigo, D. Vehicle Routing: Problems, Methods, and Application, 2nd ed.; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2014. [Google Scholar]
  2. Caceres, J.; Arias, P.; Guimarans, D.; Riera, D.; Juan, A. Rich Vehicle Routing Problem: Survey. ACM Comput. Surv. 2014, 47, 1–28. [Google Scholar] [CrossRef]
  3. Vidal, T.; Crainic, T.G.; Gendreau, M.; Prins, C. Heuristics for multi-attribute vehicle routing problems: A survey and synthesis. Eur. J. Oper. Res. 2013, 231, 1–21. [Google Scholar] [CrossRef]
  4. Figliozzi, M.A. Vehicle routing problem for emissions minimization. Transp. Res. Rec. J. Transp. Res. Board 2010, 2197, 1–7. [Google Scholar] [CrossRef]
  5. Bektas, T.; Laporte, G. The pollution-routing problem. Transp. Res. B 2011, 45, 1232–1250. [Google Scholar] [CrossRef]
  6. Davis, B.A.; Figliozzi, M.A. A methodology to evaluate the competitiveness of electric delivery trucks. Transp. Res. E 2013, 49, 8–23. [Google Scholar] [CrossRef]
  7. Sinha, K.C.; Labi, S. Transportation Decision Making: Principles of Project Evaluation and Programming; John Wiley & Sons: New Jersey, NY, USA, 2007. [Google Scholar]
  8. Piecyk, M.; McKinnon, A.; Allen, J. Evaluating and Internalizing the Environmental Costs of Logistics. In Green Logistics: Improving the Environmental Sustainability of Logistics; McKinnon, A., Browne, A., Whiteing, A., Eds.; Kogan Page: London, UK, 2012. [Google Scholar]
  9. Korzhenevych, A.; Dehnen, N.; Bröcker, J.; Holtkamp, M.; Meier, H.; Gibson, G.; Varma, A.; Cox, V. Update of the Handbook on External Costs of Transport. Ricardo-AEA/R/ED57769. 2014. Available online: http://ec.europa.eu/transport/themes/sustainable/studies/doc/2014-handbook-external-costs-transport.pdf (accessed on 16 January 2016).
  10. Juan, A.; Goentzel, J.; Bektaş, T. Routing fleets with multiple driving ranges: Is it possible to use greener fleet configurations? Appl. Soft Comput. 2014, 21, 84–94. [Google Scholar] [CrossRef]
  11. Figliozzi, M.A. The impacts of congestion on commercial vehicle tour characteristics and costs. Transp. Res. E Logist. Transp. Rev. 2010, 46, 496–506. [Google Scholar] [CrossRef]
  12. Chen, J. Energy efficiency comparison between hydraulic hybrid and hybrid electric vehicles. Energies 2015, 8, 4697–4723. [Google Scholar] [CrossRef]
  13. Martin, K.B.; Grasman, S.E. An assessment of wind-hydrogen systems for light duty vehicles. Int. J. Hydrog. Energy 2009, 34, 6581–6588. [Google Scholar] [CrossRef]
  14. Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
  15. Schliwa, G.; Armitage, R.; Aziz, S.; Evans, J.; Rhoades, J. Sustainable city logistics: Making cargo cycles viable for urban freight transport. Res. Transp. Bus. Manag. 2015, 15, 50–57. [Google Scholar] [CrossRef]
  16. Feng, W.; Figliozzi, M.A. An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: A case study from the USA market. Transp. Res. C 2013, 26, 135–145. [Google Scholar] [CrossRef]
  17. Russo, F.; Comi, A. City characteristics and urban goods movements: A way to environmental transportation system in a sustainable city. Procedia Soc. Behav. Sci. 2012, 39, 61–73. [Google Scholar] [CrossRef]
  18. Shahraeeni, M.; Ahmed, S.; Malek, K.; van Drimmelen, B.; Kjeang, E. Life cycle emissions and cost of transportation systems: Case study on diesel and natural gas for light duty trucks in municipal fleet operations. J. Nat. Gas Sci. Eng. 2015, 24, 26–34. [Google Scholar] [CrossRef]
  19. Bernard, S.M.; Samet, J.M.; Grambsch, A.; Ebi, K.L.; Romieu, I. The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ. Health Perspect. 2001, 109, 199–209. [Google Scholar] [CrossRef] [PubMed]
  20. Nüesch, T.; Cerofolini, A.; Mancini, G.; Cavina, N.; Onder, C.; Guzzella, L. Equivalent consumption minimization strategy for the control of real driving NOx emissions of a diesel hybrid electric vehicle. Energies 2014, 7, 3148–3178. [Google Scholar] [CrossRef]
  21. Colin, G.; Chamaillard, Y.; Charlet, A.; Nelson-Gruel, D. Towards a friendly energy management strategy for hybrid electric vehicles with respect to pollution, battery and drivability. Energies 2014, 7, 6013–6030. [Google Scholar] [CrossRef]
  22. Chen, Z.; Xiong, R.; Wang, K.; Jiao, B. Optimal energy management strategy of a plug-in hybrid electric vehicle based on a particle swarm optimization algorithm. Energies 2015, 8, 3661–3678. [Google Scholar] [CrossRef]
  23. Hwang, T.; Ouyang, Y. Urban freight truck routing under stochastic congestion and emission considerations. Sustainability 2015, 7, 6610–6625. [Google Scholar] [CrossRef]
  24. Jaller, M.; Holguín-Veras, J.; Hodge, S. Parking in the city: Challenges for freight traffic. Transp. Res. Rec. J. Transp. Res. Board 2013, 2379, 46–56. [Google Scholar] [CrossRef]
  25. Browne, M.; Allen, J.; Leonardi, J. Evaluating the use of an urban consolidation centre and electric vehicles in central London. IATSS Res. 2011, 35, 1–6. [Google Scholar] [CrossRef]
  26. Pelletier, S.; Jabali, O.; Laporte, G. Goods Distributions with Electric Vehicles: Review and Research Perspectives. CIRRELT Publications. CIRRELT-2014–44. 2014. Available online: https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2014-43.pdf (accessed on 16 January 2016).
  27. Feng, W.; Figliozzi, M.A. Conventional vs electric commercial vehicle fleets: A case study of economic and technological factors affecting the competitiveness of electric commercial vehicles in the USA. Procedia Soc. Behav. Sci. 2012, 39, 702–711. [Google Scholar] [CrossRef]
  28. Afroditi, A.; Boile, M.; Theofanis, S.; Sdoukopoulos, E.; Margaritis, D. Electric Vehicle Routing Problem with industry constraints: Trends and insights for future research. Transp. Res. Procedia 2014, 3, 452–459. [Google Scholar] [CrossRef]
  29. Conway, A.; Fatisson, P.E.; Eickemeyer, P.; Cheng, J.; Peters, D. Urban micro-consolidation and last mile goods delivery by freight-tricycle in Manhattan: Opportunities and challenges. In Proceedings of the 91st Transportation Research Board Annual Meeting, Washington, DC, USA, 22–26 January 2012.
  30. Lenz, B.; Riehle, E. Bikes for urban freight? Transp. Res. Rec. J. Transp. Res. Board 2013, 2379, 39–45. [Google Scholar] [CrossRef]
  31. Demir, E.; Bektas, T.; Laporte, G. A review of recent research on green road freight transportation. Eur. J. Oper. Res. 2014, 237, 775–793. [Google Scholar] [CrossRef]
  32. Demir, E.; Huang, Y.; Scholts, S.; van Woensel, T. A selected review on the negative externalities of the freight transportation: Modeling and pricing. Transp. Res. E 2015, 77, 95–114. [Google Scholar] [CrossRef]
  33. Wang, Y.; Wang, C. Locating passenger vehicle refueling stations. Transp. Res. E 2010, 46, 791–801. [Google Scholar] [CrossRef]
  34. Li, J.Q. Transit bus scheduling with limited energy. Transp. Sci. 2014, 48, 521–539. [Google Scholar] [CrossRef]
  35. Yang, J.; Sun, H. Battery swap station location-routing problem with capacitated electric vehicles. Comput. Oper. Res. 2015, 55, 217–232. [Google Scholar]
  36. Zheng, Y.; Dong, Z.Y.; Xu, Y.; Meng, K.; Zhao, J.H.; Qiu, J. Electric vehicle battery charging/swap stations in distribution systems: Comparison study and optimal planning. IEEE Trans. Power Syst. 2014, 29, 221–229. [Google Scholar] [CrossRef]
  37. Liu, Y.X.; Hui, F.H.; Xu, R.L.; Chen, T.; Xu, X.; Li, J. Investigation on the construction mode of charging and battery-exchange station. In Proceedings of the Power Energy Engineering Conference, Wuhan, China, 25–28 March 2011; pp. 1–2.
  38. Lombardi, P.; Heuer, M.; Styczynski, Z. Battery switch station as storage system in an autonomous power system: Optimization issue. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–6.
  39. Zhou, F.Q.; Lian, Z.W.; Wan, X.L.; Yang, X.H.; Xu, Y.S. Discussion on operation mode to the electric vehicle charging station. Power Syst. Prot. Control 2010, 1, 65–72. [Google Scholar]
  40. Upchurch, C.; Kuby, M. Comparing the p-median and flow refueling models for locating alternative-fuel stations. J. Transp. Geogr. 2010, 18, 750–758. [Google Scholar] [CrossRef]
  41. Goodchild, M.F.; Noronha, V. Location-Allocation and Impulsive Shopping the Case of Gasoline Retailing. Spatial Analysis and Location-Allocation Models; Van Nostrand Reinhold: New York, NY, USA, 1987. [Google Scholar]
  42. Hodgson, M. A flow-capturing location-allocation model. Geogr. Anal. 1990, 22, 270–279. [Google Scholar] [CrossRef]
  43. Kuby, M.; Lim, S. The flow-refueling location problem for alternative-fuel vehicles. Socio Econ. Plan. Sci. 2005, 39, 125–145. [Google Scholar] [CrossRef]
  44. Lim, S.; Kuby, M. Heuristic algorithms for siting alternative-fuel stations using the flow-refueling location model. Eur. J. Oper. Res. 2010, 204, 51–61. [Google Scholar] [CrossRef]
  45. Capar, I.; Kuby, M. An efficient formulation of the flow refueling location model for alternative-fuel stations. Inst. Ind. Eng. Trans. 2012, 44, 622–636. [Google Scholar] [CrossRef]
  46. Mak, H.Y.; Rong, Y.; Shen, Z.J.M. Infrastructure planning for electric vehicles with battery swapping. Manag. Sci. 2013, 59, 1557–1575. [Google Scholar] [CrossRef]
  47. Wang, Y.W.; Lin, C.C. Locating road-vehicle refueling stations. Transp. Res. E Logist. Transp. Rev. 2009, 45, 821–829. [Google Scholar] [CrossRef]
  48. Wang, Y.W. Locating flow-recharging stations at tourist destinations to serve recreational travelers. Int. J. Sustain. Transp. 2011, 5, 153–171. [Google Scholar] [CrossRef]
  49. You, P.S.; Hsieh, Y.C. A hybrid heuristic approach to the problem of the location of vehicle charging stations. Comput. Ind. Eng. 2014, 70, 195–204. [Google Scholar] [CrossRef]
  50. Melaina, M.W. Initiating hydrogen infrastructure: Preliminary analysis of a sufficient number of initial hydrogen stations in the US. Int. J. Hydrog. Energy 2003, 28, 743–755. [Google Scholar] [CrossRef]
  51. Nicholas, M.A.; Handy, S.L.; Sperling, D. Using GIS to evaluate siting and networks of hydrogen stations. Transp. Res. Rec. J. Transp. Res. Board 2004, 1880, 126–134. [Google Scholar] [CrossRef]
  52. Nicholas, M.; Ogden, J. Detailed analysis of urban station siting for California hydrogen highway network. Transp. Res. Rec. 2007, 129–139. [Google Scholar] [CrossRef]
  53. Schwoon, M. A tool to optimize the initial distribution of hydrogen fueling stations. Transp. Res. D Transp. Environ. 2007, 12, 70–82. [Google Scholar] [CrossRef]
  54. Stiller, C.; Seydel, P.; Bünger, U.; Wietschel, M. Early hydrogen user centres and corridors as part of the European hydrogen energy roadmap (HyWays). Int. J. Hydrog. Energy 2008, 33, 4193–4208. [Google Scholar] [CrossRef]
  55. Hosseini, M.; MirHassani, S.A. Selecting optimal location for electric recharging stations with queue. KSCE J. Civ. Eng. 2015, 19, 2271–2280. [Google Scholar] [CrossRef]
  56. Olivella-Rosell, P.; Villafafila-Robles, R.; Sumper, A.; Bergas-Jané, J. Probabilistic agent-based model of electric vehicle charging demand to analyse the impact on distribution networks. Energies 2015, 8, 4160–4187. [Google Scholar] [CrossRef]
  57. Keles, D.; Wietschel, M.; Most, D.; Rentz, O. Market penetration of fuel cell vehicles—Analysis based on agent behavior. Int. J. Hydrog. Energy 2008, 33, 4444–4455. [Google Scholar] [CrossRef]
  58. Dangl, T. Investment and capacity choice under uncertain demand. Eur. J. Oper. Res. 1999, 117, 415–428. [Google Scholar] [CrossRef]
  59. Qin, R.; Grasman, S.E.; Martin, K.B. An inventory modeling approach for hydrogen fueling station capacity considering and outside option. Energy Syst. 2013, 4, 195–217. [Google Scholar]
  60. Struben, J.; Sterman, J. Transition challenges for alternative fuel vehicle and transportation systems. Environ. Plan. B Plan. Des. 2007, 35, 1070–1097. [Google Scholar] [CrossRef]
  61. Gnann, T.; Plötz, P. A review of combined models for market diffusion of alternative fuel vehicles and refueling infrastructure. Renew. Sustain. Energy Rev. 2015, 47, 783–793. [Google Scholar] [CrossRef]
  62. Lin, C.; Choy, K.L.; Ho, G.T.S.; Chung, S.H.; Lam, H.Y. Survey of green vehicle routing problem: Past and future trends. Expert Syst. Appl. 2014, 3, 1118–1138. [Google Scholar] [CrossRef]
  63. Lebeau, P.; De Cauwer, C.; Van Mierlo, J.; Macharis, C.; Verbeke, W.; Coosemans, T. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre? Sci. World J. 2015, 302867. [Google Scholar] [CrossRef] [PubMed]
  64. Gonçalves, F.; Cardoso, S.R.; Relvas, S.; Barbosa-Povoa, A. Optimization of a distribution network using electric vehicles: A VRP problem. In Proceedings of the IO2011-15 Congresso da associação Portuguesa de Investigação Operacional, Coimbra, Portugal, 18–20 April 2011.
  65. Erdoğan, S.; Miller-Hooks, E. A green vehicle routing problem. Transp. Res. E Logist. Transp. Rev. 2012, 48, 100–114. [Google Scholar] [CrossRef]
  66. Schneider, M.; Stenger, A.; Goeke, D. The electric vehicle-routing problem with time windows and recharging stations. Transp. Sci. 2014, 48, 500–520. [Google Scholar] [CrossRef]
  67. Conrad, R.G.; Figliozzi, M.A. The Recharging Vehicle Routing Problem. Available online: http://web.cecs.pdx.edu/~maf/Conference_Proceedings/2011_The_Recharging_Vehicle_Routing_Problem.pdf (accessed on 16 January 2016).
  68. Bae, S.H.; Sarkis, J.; Yoo, C.S. Greening transportation fleets: Insights from a two-stage game theoretic model. Transp. Res. E Logist. Transp. Rev. 2011, 47, 793–807. [Google Scholar] [CrossRef]
  69. Van Duin, J.H.R.; Tavasszy, L.A.; Quak, H.J. Towards E(lectric)-urban freight: First promising steps in the electric vehicle revolution. Eur. Transp. Trasp. Eur. 2013, 54, 1–19. [Google Scholar]
  70. Hiermann, G.; Puchinger, J.; Hartl, R.F. The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations. 2015. Available online: http://prolog.univie.ac.at/research/publications/downloads/Hie_2015_638.pdf (accessed on 16 January 2016).
  71. Mercuri, R.; Bauen, A.; Hart, D. Options for refueling hydrogen fuel cell vehicles in Italy. J. Power Sources 2002, 106, 353–363. [Google Scholar] [CrossRef]
  72. Joffe, D.; Hart, D.; Bauen, A. Modelling of hydrogen infrastructure for vehicle refueling in London. J. Power Sources 2004, 131, 13–22. [Google Scholar] [CrossRef]
  73. O’Garra, T.; Mourato, S.; Pearson, P. Analyzing awareness and acceptability of hydrogen vehicles: A London case study. Int. J. Hydrog. Energy 2005, 30, 649–659. [Google Scholar] [CrossRef]
  74. Brey, J.J.; Brey, R.; Carazo, A.F.; Contreras, I.; Hernandez-Diaz, A.G.; Gallardo, V. Designing a gradual transition to a hydrogen economy on Spain. J. Power Sources 2006, 159, 1231–1240. [Google Scholar] [CrossRef]
  75. Weinert, J.X.; Liu, S.; Ogden, J.M.; Ma, J. Hydrogen refueling station costs in Shanghai. Int. J. Hydrog. Energy 2007, 32, 4089–4100. [Google Scholar] [CrossRef]
  76. Tzimas, E.; Castello, P.; Peteves, S. The evolution of size and cost of a hydrogen delivery infrastructure in Europe in the medium and long term. Int. J. Hydrog. Energy 2007, 32, 1355–1368. [Google Scholar] [CrossRef]
  77. Ball, M.; Wietschel, M.; Rentz, O. Integration of a hydrogen economy into the German energy system: An optimizing modeling approach. Int. J. Hydrog. Energy 2007, 32, 1355–1368. [Google Scholar] [CrossRef]
  78. Almansoori, A.; Shah, N. Design and operation of a future hydrogen supply chain: Snapshot model. Chem. Eng. Res. Des. 2006, 84, 423–438. [Google Scholar] [CrossRef]
  79. Kim, J.; Moon, I. Strategic design of hydrogen infrastructure considering cost and safety using multiobjective optimization. Int. J. Hydrog. Energy 2008, 33, 5887–5896. [Google Scholar] [CrossRef]
  80. Lin, Z.; Chen, C.; Ogden, J.; Fan, Y. The least-cost hydrogen for southern California. Int. J. Hydrog. Energy 2008, 33, 3009–3014. [Google Scholar] [CrossRef]
  81. Johnson, N.; Yang, C.; Ogden, J. A GIS-based assessment of coal-based hydrogen infrastructure deployment in the State of Ohio. Int. J. Hydrog. Energy 2008, 30, 5287–5303. [Google Scholar] [CrossRef]
  82. Ogden, J.M. Developing an infrastructure for hydrogen vehicles: A southern California case study. Int. J. Hydrog. Energy 1999, 24, 709–730. [Google Scholar] [CrossRef]
  83. Agnolucci, P.; McDowall, W. Designing future hydrogen infrastructure: Insights from analysis at different spatial scales. Int. J. Hydrog. Energy 2013, 38, 5181–5191. [Google Scholar] [CrossRef]
  84. Galus, M.D.; Zima, M.; Andersson, G. On integration of plug-in hybrid electric vehicles into existing power system structures. Energy Policy 2011, 38, 6736–6745. [Google Scholar] [CrossRef]
  85. Sioshansi, R. OR Forum-Modeling the impacts of electricity tariffs on plug-in hybrid electric vehicle charging, costs, and emissions. Oper. Res. 2012, 60, 506–516. [Google Scholar] [CrossRef]
  86. Huang, J.; Leng, M.; Liang, L.; Liu, J. Promoting electric automobiles: Supply chain analysis under a government’s subsidy incentive scheme. IIE Trans. 2012, 45, 826–844. [Google Scholar] [CrossRef]
  87. Avci, B.; Girortra, K.; Netessine, S. Electric vehicles with a battery switching station: Adoption and environmental impact. Manag. Sci. 2014, 61, 772–794. [Google Scholar] [CrossRef]
  88. Kleindorfer, P.R.; Neboian, A.; Roset, A.; Spinler, S. Fleet renewal with electric vehicles at La Poste. Interfaces 2012, 42, 465–477. [Google Scholar] [CrossRef]
  89. Wang, Y.W.; Lin, C.C. Locating multiple types of recharging stations for battery-powered electric vehicle transport. Transp. Res. E Logist. Transp. Rev. 2013, 58, 76–87. [Google Scholar] [CrossRef]
  90. Chocteau, V.; Drake, D.; Kleindorfer, P.; Orsato, R.J.; Roset, A. Collaborative innovation for sustainable fleet operations: The Electric Vehicle Adoption Decision. 2011. Available online: http://www.insead.edu/facultyresearch/research/doc.cfm?did=47857 (accessed on 16 January 2016).
  91. Golden, B.; Assad, A.; Levy, L.; Gheysens, F. The fleet size and mix vehicle routing problem. Comput. Oper. Res. 1984, 11, 49–66. [Google Scholar] [CrossRef]
  92. Baldacci, R.; Battarra, M.; Vigo, D. Routing a Heterogeneous Fleet of Vehicles. In The Vehicle Routing Problem: Latest Advances and New Challenges; Golden, B., Raghavan, S., Wasil, E., Eds.; Springer: New York, NY, USA, 2008; pp. 3–27. [Google Scholar]
  93. Liu, F.H.; Shen, S.Y. The fleet size and mix vehicle routing problem with time windows. J. Oper. Res. Soc. 1999, 50, 721–732. [Google Scholar] [CrossRef]
  94. Tredeau, F.P.; Salameh, Z.M. Evaluation of lithium iron phosphate batteries for electric vehicles application. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–10 September 2009; pp. 1266–1270.
  95. Botsford, C.; Szczepanek, A. Fast charging vs. slow charging: Pros and cons for the new age of electric vehicles. In Proceedings of the EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Stavanger, Norway, 13–16 May 2009.
  96. Hung, Y.C.; Michailidis, G. Optimal routing for electric vehicle service systems. Eur. J. Oper. Res. 2015, 247, 515–524. [Google Scholar] [CrossRef]
  97. Liu, W.Y.; Lin, C.C.; Chiu, C.R.; Tsao, Y.S.; Wang, Q. Minimizing the carbon footprint for the time-dependent heterogeneous-fleet vehicle routing problem with alternative paths. Sustainability 2014, 6, 4658–4684. [Google Scholar] [CrossRef]
  98. Fang, W.T.; Huang, C.W.; Chou, J.Y.; Cheng, B.Y.; Shih, S.S. Low carbon footprint routes for bird watching. Sustainability 2015, 7, 3290–3310. [Google Scholar] [CrossRef]
  99. Dominguez, O.; Juan, A.; Nuez, I.; Ouelhadj, D. An ILS-Biased Randomization algorithm for the two-dimensional loading HFVRP with sequential loading and items rotation. J. Oper. Res. Soc. 2015. [Google Scholar] [CrossRef]
  100. Juan, A.; Grasman, S.; Caceres, J.; Bektas, T. A Simheuristic Algorithm for the single-period stochastic inventory routing problem with stock-outs. Simul. Model. Pract. Theory 2014, 46, 40–52. [Google Scholar] [CrossRef]
  101. Doerner, K.F.; Schmid, V. Survey: Matheuristics for Rich Vehicle Routing Problems. In Hybrid Metaheuristics; Blesa, M.J., Blum, C., Raidl, G., Roli, A., Sampels, M., Eds.; Springer: Berlin, Germany, 2010; pp. 206–221. [Google Scholar]
  102. Juan, A.; Faulin, J.; Grasman, S.; Rabe, M.; Figueira, G. A review of Simheuristics: Extending metaheuristics to deal with stochastic optimization problems. Oper. Res. Perspect. 2015, 2, 62–72. [Google Scholar] [CrossRef]
  103. Juan, A.; Faulin, J.; Jorba, J.; Caceres, J.; Marques, J. Using parallel & distributed computing for solving real-time vehicle routing problems with stochastic demands. Ann. Oper. Res. 2013, 207, 43–65. [Google Scholar]
  104. Fikar, C.; Juan, A.; Martinez, E.; Hirsch, P. A discrete-event driven metaheuristic for dynamic home-service routing with synchronized trip sharing. Eur. J. Ind. Eng. 2016, in press. [Google Scholar] [CrossRef]
  105. Aguirre, K.; Eisenhardt, L.; Lim, C.; Nelson, B.; Norring, A.; Slowik, P.; Tu, N. Lifecycle Analysis Comparison of a Battery Electric Vehicle and a Conventional Gasoline vehicle. Available online: http://www.ioe.ucla.edu/perch/resources/files/batteryelectricvehiclelca2012.pdf (accessed on 16 January 2016).
  106. Gao, L.; Winfield, Z.C. Life cycle assessment of environmental and economic impacts of advanced vehicles. Energies 2012, 5, 605–620. [Google Scholar] [CrossRef]
  107. Li, S.; Li, J.; LI, N.; Gao, Y. Vehicle Cycle Analysis Comparison of Battery Electric Vehicle and Conventional Vehicle in China; SAE Technical Paper 2013-01-2581; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
  108. Noori, M.; Gardner, S.; Tatari, O. Electric vehicle cost, emissions, and water footprint in the United States: Development of a regional optimization model. Energy 2015, 89, 610–625. [Google Scholar] [CrossRef]
  109. Aultman-Hall, L.; Sears, J.; Dowds, J.; Hines, P. Travel demand and charging capacity for electric vehicles in rural states. Transp. Res. Rec. J. Transp. Res. Board 2012, 2287, 27–36. [Google Scholar] [CrossRef]
  110. Newman, D.; Wells, P.; Donovan, C.; Nieuwenhuis, P.; Davies, H. Urban, sub-urban or rural: Where is the best place for electric vehicles? Int. J. Autom. Technol. Manag. 2014, 14, 306–323. [Google Scholar] [CrossRef]
  111. Wappelhorst, S.; Sauer, M.; Hinkeldein, D.; Bocherding, A.; Glaß, T. Potential of electric carsharing in urban and rural areas. Transp. Res. Procedia 2014, 4, 374–386. [Google Scholar] [CrossRef]
  112. Kinomura, S.; Kusafuka, H.; Kamichi, K.; Ono, T. Development of Vehicle Power Connector Equipped with Outdoor Power Outlet Using Vehicle Inlet of Plug-in Hybrid Vehicle; SAE Technical Papers 2013-01-1442; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
  113. Yamamura, T.; Miwa, H. Store-carry-forward energy distribution method and routing control method for use in a disaster. In Proceedings of the 2014 International Conference on Intelligent Networking and Collaborative Systems, Salerno, Italy, 10–12 September 2014; pp. 289–295.
  114. Yamagata, Y.; Seya, H.; Kuroda, S. Energy resilient smart community: Sharing green electricity using V2C technology. Energy Procedia 2014, 61, 84–87. [Google Scholar] [CrossRef]

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.