Next Article in Journal
Wetland Changes and Their Responses to Climate Change in the “Three-River Headwaters” Region of China since the 1990s
Next Article in Special Issue
An Energy Management System of a Fuel Cell/Battery Hybrid Boat
Previous Article in Journal
Design of a Control Scheme for Distribution Static Synchronous Compensators with Power-Quality Improvement Capability
Previous Article in Special Issue
Preparation of Polybenzimidazole-Based Membranes and Their Potential Applications in the Fuel Cell System
Energies 2014, 7(4), 2498-2514; doi:10.3390/en7042498

Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units

1,* , 1
1 Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan 2 FIELD Energy Ltd., Zhudong 31061, Taiwan
* Author to whom correspondence should be addressed.
Received: 13 December 2013 / Revised: 18 February 2014 / Accepted: 21 March 2014 / Published: 22 April 2014
(This article belongs to the Special Issue Polymer Electrolyte Membrane Fuel Cells)
View Full-Text   |   Download PDF [2236 KB, uploaded 17 March 2015]   |  


In this study, fuel, oxidant supply and cooling systems with microcontroller units (MCU) are developed in a compact design to fit two 5 kW proton exchange membrane fuel cell (PEMFC) stacks. At the initial stage, the testing facility of the system has a large volume (2.0 m × 2.0 m × 1.5 m) with a longer pipeline and excessive control sensors for safe testing. After recognizing the performance and stability of stack, the system is redesigned to fit in a limited space (0.4 m × 0.5 m × 0.8 m). Furthermore, the stack performance is studied under different hydrogen recycling modes. Then, two similar 5 kW stacks are directly coupled with diodes to obtain a higher power output and safe operation. The result shows that the efficiency of the 5 kW stack is 43.46% with a purge period of 2 min with hydrogen recycling and that the hydrogen utilization rate µf is 66.31%. In addition, the maximum power output of the twin-coupled module (a power module with two stacks in electrical cascade/parallel arrangement) is 9.52 kW.
Keywords: fuel cell; microcontroller units; compact design; electrical coupling fuel cell; microcontroller units; compact design; electrical coupling
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
MDPI and ACS Style

Ma, H.; Cheng, W.; Fang, F.; Hsu, C.; Lin, C. Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units. Energies 2014, 7, 2498-2514.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here


[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert