Energies 2013, 6(9), 4879-4896; doi:10.3390/en6094879
Article

Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

Received: 5 July 2013; in revised form: 25 August 2013 / Accepted: 5 September 2013 / Published: 20 September 2013
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper proposes an enhanced particle swarm optimization (EPSO) based hybrid forecasting method for short-term wind power forecasting. The hybrid forecasting method combines the persistence method, the back propagation neural network, and the radial basis function (RBF) neural network. The EPSO algorithm is employed to optimize the weight coefficients in the hybrid forecasting method. To demonstrate the effectiveness of the proposed method, the method is tested on the practical information of wind power generation of a wind energy conversion system (WECS) installed on the Taichung coast of Taiwan. Comparisons of forecasting performance are made with the individual forecasting methods. Good agreements between the realistic values and forecasting values are obtained; the test results show the proposed forecasting method is accurate and reliable.
Keywords: wind power forecasting; hybrid forecasting method; persistence method; back propagation neural network; radial basis function neural network; enhanced particle swarm optimization algorithm
PDF Full-text Download PDF Full-Text [354 KB, uploaded 20 September 2013 10:40 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Chang, W.-Y. Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method. Energies 2013, 6, 4879-4896.

AMA Style

Chang W-Y. Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method. Energies. 2013; 6(9):4879-4896.

Chicago/Turabian Style

Chang, Wen-Yeau. 2013. "Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method." Energies 6, no. 9: 4879-4896.

Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert