Energies 2013, 6(2), 934-952; doi:10.3390/en6020934
Article

Modeling of the Partial Discharge Process in a Liquid Dielectric: Effect of Applied Voltage, Gap Distance, and Electrode Type

1,* email, 1,2email, 2email, 1email and 1email
Received: 29 November 2012; in revised form: 1 February 2013 / Accepted: 4 February 2013 / Published: 8 February 2013
Download PDF [1191 KB, uploaded 8 February 2013]
Abstract: The partial discharge (PD) process in liquid dielectrics is influenced by several factors. Although the PD current contains the information representing the discharge process during the PD event, it is difficult to determine the detailed dynamics of what is happening in the bulk of the liquid. In this paper, a microscopic model describing the dynamics of the charge carriers is implemented. The model consists of drift-diffusion equations of electrons, positive and negative ions coupled with Poisson’s equation. The stochastic feature of PD events is included in the equation. First the model is validated through comparison between the calculated PD current and experimental data. Then experiments are conducted to study the effects of the amplitude of the applied voltage, gap distance and electrode type on the PD process. The PD currents under each condition are recorded. Simulations based on the model have been conducted to analyze the dynamics of the PD events under each condition, and thus explain the mechanism of how these factors influence the PD events. The space charge generated in the PD process is revealed as the main reason affecting the microscopic process of the PD events.
Keywords: partial discharge; discharge current; microscopic model; space charge
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Sima, W.; Jiang, C.; Lewin, P.; Yang, Q.; Yuan, T. Modeling of the Partial Discharge Process in a Liquid Dielectric: Effect of Applied Voltage, Gap Distance, and Electrode Type. Energies 2013, 6, 934-952.

AMA Style

Sima W, Jiang C, Lewin P, Yang Q, Yuan T. Modeling of the Partial Discharge Process in a Liquid Dielectric: Effect of Applied Voltage, Gap Distance, and Electrode Type. Energies. 2013; 6(2):934-952.

Chicago/Turabian Style

Sima, Wenxia; Jiang, Chilong; Lewin, Paul; Yang, Qing; Yuan, Tao. 2013. "Modeling of the Partial Discharge Process in a Liquid Dielectric: Effect of Applied Voltage, Gap Distance, and Electrode Type." Energies 6, no. 2: 934-952.


Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert