Next Article in Journal
Determination of Steady-State and Faulty Regimes of Overhead Lines by Means of Multiconductor Cell Analysis (MCA)
Next Article in Special Issue
Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production
Previous Article in Journal
Exergy Analysis of Overspray Process in Gas Turbine Systems
Previous Article in Special Issue
Fuel Characteristics of Biodiesel Produced from a High-Acid Oil from Soybean Soapstock by Supercritical-Methanol Transesterification
Energies 2012, 5(8), 2759-2770; doi:10.3390/en5082759
Article

Deacidification of Pistacia chinensis Oil as a Promising Non-Edible Feedstock for Biodiesel Production in China

1,2,* , 1
, 1
, 1
, 1
 and 1
Received: 1 March 2012; in revised form: 29 June 2012 / Accepted: 20 July 2012 / Published: 31 July 2012
(This article belongs to the Special Issue Biomass and Biofuels 2012)
Download PDF [224 KB, uploaded 31 July 2012]
Abstract: Pistacia chinensis seed oil is proposed as a promising non-edible feedstock for biodiesel production. Different extraction methods were tested and compared to obtain crude oil from the seed of Pistacia chinensis, along with various deacidification measures of refined oil. The biodiesel was produced through catalysis of sodium hydroxide (NaOH) and potassium hydroxide (KOH). The results showed that the acid value of Pistacia chinensis oil was successfully reduced to 0.23 mg KOH/g when it was extracted using ethanol. Consequently, the biodiesel product gave a high yield beyond 96.0%. The transesterification catalysed by KOH was also more complete. Fourier transform infrared (FTIR) spectroscopy was used to monitor the transesterification reaction. Analyses by gas chromatography-mass spectrometry (GC-MS) and gas chromatography with a flame ionisation detector (GC-FID) certified that the Pistacia chinensis biodiesel mainly consisted of C18 fatty acid methyl esters (81.07%) with a high percentage of methyl oleate. Furthermore, the measured fuel properties of the biodiesel met the required standards for fuel use. In conclusion, the Pistacia chinensis biodiesel is a qualified and feasible substitute for fossil diesel.
Keywords: biodiesel; Pistacia chinensis seed oil; deacidification; transesterification biodiesel; Pistacia chinensis seed oil; deacidification; transesterification
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Qin, S.; Sun, Y.; Shi, C.; He, L.; Meng, Y.; Ren, X. Deacidification of Pistacia chinensis Oil as a Promising Non-Edible Feedstock for Biodiesel Production in China. Energies 2012, 5, 2759-2770.

AMA Style

Qin S, Sun Y, Shi C, He L, Meng Y, Ren X. Deacidification of Pistacia chinensis Oil as a Promising Non-Edible Feedstock for Biodiesel Production in China. Energies. 2012; 5(8):2759-2770.

Chicago/Turabian Style

Qin, Shenjun; Sun, Yuzhuang; Shi, Changlin; He, Leqin; Meng, Yuan; Ren, Xiaohui. 2012. "Deacidification of Pistacia chinensis Oil as a Promising Non-Edible Feedstock for Biodiesel Production in China." Energies 5, no. 8: 2759-2770.


Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert