Optimization of Nanofluid Flow and Temperature Uniformity in the Spectral Beam Splitting Module of PV/T System
Abstract
:1. Introduction
2. Preparation and Optical Properties Characterization of ZnO Nanofluids
2.1. Preparation of Nanofluids
2.2. Optical Properties of Nanofluids
3. Spectral Beam Splitting Module and Physical Model Settings
3.1. Spectral Beam Splitting Module and Parameters
3.2. Physical Model and Boundary Condition Settings
3.3. Mathematical Model
3.4. Grid and Time Independence Study and Model Validation
4. Analysis of Simulation Results
4.1. Analysis of Flow Characteristics under Different Arrangements at the Inlet End
4.2. Convective Heat Transfer Characteristics Analysis
5. Conclusions
- The shorter the inlet end is, the more uneven the velocity distribution of the interlayer fluid is, which leads to the smaller intensity of convective heat transfer within the interlayer and the uneven distribution of the temperature field.
- Case II and case III are more ideal, of which case II is the most ideal. Analysis of the reasons, case II velocity field distribution, is more uniform. It indicates that the fluid flow state and the flow velocity distribution play a decisive role in the uniformity of temperature distribution.
- The cross-sectional area of the central “leafy” low-temperature region resulting from different arrangements is not the same, indicating that the central cross-section′s temperature field distribution is not symmetric. The temperature field distribution at the cross-section is similar, but the temperature field is different in the direction of interlayer thickness.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuşkaya, S.; Bilgili, F.; Muğaloğlu, E.; Khan, K.; Hoque, M.E.; Toguç, N. The role of solar energy usage in environmental sustainability: Fresh evidence through time-frequency analyses. Renew. Energy 2023, 206, 858–871. [Google Scholar] [CrossRef]
- He, Q.; Wang, S.; Tong, M.; Liu, Y. Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Convers. Manag. 2012, 64, 199–205. [Google Scholar] [CrossRef]
- Chen, N.; Ma, H.; Li, Y.; Cheng, J.; Zhang, C.; Wu, D.; Zhu, H. Complementary optical absorption and enhanced solar thermal conversion of CuO-ATO nanofluids. Sol. Energy Mater. Sol. Cells 2017, 162, 83–92. [Google Scholar] [CrossRef]
- Sajid, M.U.; Bicer, Y. Nanofluids as solar spectrum splitters: A critical review. Sol. Energy 2020, 207, 974–1001. [Google Scholar] [CrossRef]
- Otanicar, T.P.; Phelan, P.E.; Prasher, R.S.; Rosengarten, G.; Taylor, R.A. Nanofluid-based direct absorption solar collector. J. Renew. Sustain. Energy 2010, 2, 33102. [Google Scholar] [CrossRef] [Green Version]
- Zondag, H. Flat-plate PV-Thermal collectors and systems: A review. Renew. Sustain. Energy Rev. 2008, 12, 891–959. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Rosen, M.A. A critical review of photovoltaic–thermal solar collectors for air heating. Appl. Energy 2011, 88, 3603–3614. [Google Scholar] [CrossRef]
- Huaxu, L.; Fuqiang, W.; Dong, Z.; Ziming, C.; Chuanxin, Z.; Bo, L.; Huijin, X. Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy 2020, 194, 116913. [Google Scholar] [CrossRef]
- Blocker, W. High-efficiency solar energy conversion through flux concentration and spectrum splitting. Proc. IEEE 1978, 66, 104–105. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, P.; Mo, S.; Chen, Z. Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology. Sol. Energy Mater. Sol. Cells 2010, 94, 1686–1696. [Google Scholar] [CrossRef]
- Imenes, A.; Mills, D. Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: A review. Sol. Energy Mater. Sol. Cells 2004, 84, 19–69. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Q.; Liu, Y.; Sheng, C.; Cheng, X.; Chen, Z. Optical analysis of a hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique. Sci. China Technol. Sci. 2013, 56, 1387–1394. [Google Scholar] [CrossRef]
- Liu, M.; Du, M.; Long, G.; Wang, H.; Qin, W.; Zhang, D.; Ye, S.; Liu, S.; Shi, J.; Liang, Z.; et al. Iron/Quinone-based all-in-one solar rechargeable flow cell for highly efficient solar energy conversion and storage. Nano Energy 2020, 76, 104907. [Google Scholar] [CrossRef]
- Hajabdollahi, Z.O.; Mirzaei, M.; Kim, K.C. Effects of a mixture of cuo and AL2O3 nanoparticles on the thermal efficiency of a flat plate solar collector at different mass flow rates. Heat Transf. Res. 2019, 50, 945–965. [Google Scholar] [CrossRef]
- Sardarabadi, M.; Passandideh-Fard, M. Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Sol. Energy Mater. Sol. Cells 2016, 157, 533–542. [Google Scholar] [CrossRef]
- Hissouf, M.; Feddaoui, M.; Najim, M.; Charef, A. Numerical study of a covered Photovoltaic-Thermal Collector (PVT) enhancement using nanofluids. Sol. Energy 2020, 199, 115–127. [Google Scholar] [CrossRef]
- Farajzadeh, E.; Movahed, S.; Hosseini, R. Experimental and numerical investigations on the effect of Al2O3/TiO2- H2O nanofluids on thermal efficiency of the flat plate solar collector. Renew. Energy 2018, 118, 122–130. [Google Scholar] [CrossRef]
- Wole-Osho, I.; Adun, H.; Adedeji, M.; Okonkwo, E.C.; Kavaz, D.; Dagbasi, M. Effect of hybrid nanofluids mixture ratio on the performance of a photovoltaic thermal collector. Int. J. Energy Res. 2020, 44, 9064–9081. [Google Scholar] [CrossRef]
- Salari, A.; Kazemian, A.; Ma, T.; Hakkaki-Fard, A.; Peng, J. Nanofluid based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis. Energy Convers. Manag. 2020, 205, 112384. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Wang, T.; Xiao, L.; Shen, Z.-G. Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system. Sol. Energy 2019, 180, 489–500. [Google Scholar] [CrossRef]
- Abdollahi, N.; Rahimi, M. Potential of water natural circulation coupled with nano-enhanced PCM for PV module cooling. Renew. Energy 2019, 147, 302–309. [Google Scholar] [CrossRef]
- Mittal, T.; Saroha, S.; Bhalla, V.; Khullar, V.; Tyagi, H.; Taylor, R.A.; Otanicar, T.P. Numerical Study of Solar Photovoltaic/Thermal (PV/T) Hybrid Collector Using Nanofluids. In Proceedings of the ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, Hong Kong, China, 11–14 December 2013. [Google Scholar]
- Hassani, S.; Taylor, R.A.; Mekhilef, S.; Saidur, R. A cascade nanofluid-based PV/T system with optimized optical and thermal properties. Energy 2016, 12, 963–975. [Google Scholar] [CrossRef]
- Khatibi, M.; Nemati-Farouji, R.; Taheri, A.; Kazemian, A.; Ma, T.; Niazmand, H. Optimization and performance investigation of the solidification behavior of nano-enhanced phase change materials in triplex-tube and shell-and-tube energy storage units. J. Energy Storage 2021, 33, 102055. [Google Scholar] [CrossRef]
- Kazemian, A.; Taheri, A.; Sardarabadi, A.; Ma, T.; Passandideh-Fard, M.; Peng, J. Energy, exergy and environmental analysis of glazed and unglazed PVT system integrated with phase change material: An experimental approach. Sol. Energy 2020, 201, 178–189. [Google Scholar] [CrossRef]
- Erdil, E.; Ilkan, M.; Egelioglu, F. An experimental study on energy generation with a photovoltaic (PV)–solar thermal hybrid system. Energy 2008, 33, 1241–1245. [Google Scholar] [CrossRef]
Name | Parameter |
---|---|
Nano ZnO powder | Purity: 99.9% Average particle size: 30 nm |
SDBS (Sodium dodecylbenzene sulfonate) | Purity: >90% |
Geometric Parameters/mm | Values |
---|---|
Length/L | 350 |
Width/W | 330 |
Height/H | 25 |
Interlayer thickness/M | 20 |
Inlet and outlet pipe diameter/D | 10 |
Pipe thickness/d | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Tian, R.; Han, X. Optimization of Nanofluid Flow and Temperature Uniformity in the Spectral Beam Splitting Module of PV/T System. Energies 2023, 16, 4666. https://doi.org/10.3390/en16124666
Lu L, Tian R, Han X. Optimization of Nanofluid Flow and Temperature Uniformity in the Spectral Beam Splitting Module of PV/T System. Energies. 2023; 16(12):4666. https://doi.org/10.3390/en16124666
Chicago/Turabian StyleLu, Liwei, Rui Tian, and Xiaofei Han. 2023. "Optimization of Nanofluid Flow and Temperature Uniformity in the Spectral Beam Splitting Module of PV/T System" Energies 16, no. 12: 4666. https://doi.org/10.3390/en16124666