A Cost-Effective Methodology for Sizing Solar PV Systems for Existing Irrigation Facilities in Chile
Abstract
:1. Introduction
2. Proposed Methodology for the Implementation of a Solar PV System into Existing Irrigation Systems
2.1. Water Demand
2.2. Electricity Demand of an Irrigation System
2.3. Solar PV System Design
2.3.1. Off-Grid PV System
2.3.2. On-Grid PV System
3. Case Studies in Chile
3.1. Baseline—Year 0
3.2. Performance Analysis of Irrigation Systems—Year 1
3.2.1. Water Demand
3.2.2. Electricity Demand of an Irrigation System
3.2.3. Results of Energy-Efficient Actions
3.3. Solar PV System Design—Year 2
3.3.1. Off-Grid PV System
3.3.2. On-Grid PV System
3.3.3. Effects of Installation of PV System on Irrigation Systems
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
Nomenclature | |
Ac | Surface area covered by crops (ha) |
AC | Altern current |
D | Water demand (mm/month-ha) |
Di | Days of irrigation (days/months) |
DC | Direct current |
e | Steam pressure (kPa) |
Ea | Application effectiveness |
EA | Annual electricity demand (kWh/year) |
Ed | Daily electricity demand (kWh/day) |
E1kW,PV | Annual electricity produced (kWh/(kW·year)) |
ET | Reference evapotranspiration (mm/(day-ha)) |
G | Heat rate (MJ/(m2·day)) |
H | System pressure head (kPa) |
Kc | Crop coefficient |
Kr | Coverage coefficient |
ND | Net water demand (m3/month) |
Ne | Number of emitters (1/m2) |
Nplants | Number of plants |
Pe | Effective rainfall (mm/(month·ha)) |
PF | Surface of each plant frame (ha) |
qe | Volume flow rate (L/h) |
Q | Volume flow rate (m3/s) |
RL | Washing requirement |
RID | Daily irrigation requirement (L/(m2·day)) |
Rn | Net solar radiation incident (MJ/(m2·day)) |
ti | Length of time (h) |
u2 | Wind velocity (m/s) |
W | Electrical power (W) |
W1kW,PV | Average electrical power (kW/kW) |
Subscripts | |
a | Saturated |
c | Crop |
m | Mechanic |
p | Pump |
PV | Photovoltaic |
s | Real |
0 | Reference |
Greek letters | |
η | Efficiency |
γ | Psychrometric constant (kPa/°C) |
Δ | Slope of the steam pressure (kPa/°C) |
References
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Román-Sánchez, I.M. Sustainable Water Use in Agriculture: A Review of Worldwide Research. Sustainability 2018, 10, 1084. [Google Scholar] [CrossRef]
- Abu-Aligah, M. Design of photovoltaic water pumping system and compare it with diesel powered pump. Jordan J. Mech. Ind. Eng. 2011, 5, 273–280. [Google Scholar]
- Senol, R. An analysis of solar energy and irrigation systems in Turkey. Energy Policy 2012, 47, 478–486. [Google Scholar] [CrossRef]
- Vick, B.D.; Neal, B.A. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems. Sol. Energy 2012, 86, 1197–1207. [Google Scholar] [CrossRef]
- Maleki, A.; Askarzadeh, A. Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran. Sustain. Energy Technol. Assess. 2014, 7, 147–153. [Google Scholar] [CrossRef]
- Feron, S.; Cordero, R.R.; Labbe, F. Rural Electrification Efforts Based on Off-Grid Photovoltaic Systems in the Andean Region: Comparative Assessment of Their Sustainability. Sustainability 2017, 9, 1825. [Google Scholar] [CrossRef]
- Shoeb, M.A.; Shafiullah, G. Renewable Energy Integrated Islanded Microgrid for Sustainable Irrigation A—Bangladesh Perspective. Energies 2018, 11, 1283. [Google Scholar] [CrossRef]
- De Fraiture, C.; Giordano, M. Small private irrigation: A thriving but overlooked sector. Agric. Water Manag. 2014, 131, 167–174. [Google Scholar] [CrossRef]
- Cuadros, F.; López-Rodríguez, F.; Marcos, A.; Coello, J. A procedure to size solar-powered irrigation (photoirrigation) schemes. Sol. Energy 2004, 76, 465–473. [Google Scholar] [CrossRef]
- Pillai, U.; Cruz, K. Source of Cost Reduction in Solar Photovoltaics. 2013. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2259155 (accessed on 23 May 2018).[Green Version]
- Reca, J.; Torrente, C.; López-Luque, R.; Martínez, J. Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses. Renew. Energy 2016, 85, 1143–1154. [Google Scholar] [CrossRef]
- Carroquino, J.; Dufo-López, R.; Bernal-Agustín, J.L. Sizing of off-grid renewable energy systems for drip irrigation in Mediterranean crops. Renew. Energy 2015, 76, 566–574. [Google Scholar] [CrossRef]
- D’Amico, J.P.; Varela, P.; Justianovich, S.; Hall, M. Dimensionamiento de un Sistema de Generación Fotovoltaico Para el Riego de Cebolla en el Valle Bonaerense del Río Colorado. Available online: https://www.researchgate.net/publication/299781365_Dimensionamiento_de_un_sistema_de_generacion_fotovoltaico_para_el_riego_de_cebolla_en_el_valle_bonaerense_del_rio_Colorado (accessed on 23 May 2018).
- Estadísticas Productivas ODEPA Oficina De Estudios y Políticas Agrarias—Ministerio de Agricultura de Chile. Available online: http://www.odepa.cl/rubro/frutas-frescas/ (accessed on 23 May 2018).
- Cooper, M. Energías Renovables no Convencionales en la Agricultura; Ministerio De Agricultura, Gobierno De Chile: Santiago, Chile, 2012.
- Cáceres, G.; Anrique, N.; Girard, A.; Degrève, J.; Baeyens, J.; Zhang, H.L. Performance of molten salt solar power towers in Chile. J. Renew. Sustain. Energy 2013, 5, 053142. [Google Scholar] [CrossRef]
- Feron, S. Sustainability of Off-Grid Photovoltaic Systems for Rural Electrification in Developing Countries: A Review. Sustainability 2016, 8, 1326. [Google Scholar] [CrossRef]
- Olivos, A.; Adonis, R.; Fuentes, F. Guía de Buenas Prácticas Para Eficiencia Energéticas y Reducción de Emisiones en la Industría Frutícula; Adonis, R., Ed.; Fundación para el Desarrollo Frutícola: Santiago, Chile, 2010. [Google Scholar]
- Belgacem, B.G. Performance of submersible PV water pumping systems in Tunisia. Energy Sustain. Dev. 2012, 16, 415–420. [Google Scholar] [CrossRef]
- Mokeddem, A.; Midoun, A.; Kadri, D.; Hiadsi, S.; Raja, I.A. Performance of a directly coupled PV water pumping system. Energy Convers. Manag. 2011, 52, 3089–3095. [Google Scholar] [CrossRef]
- World Bank. World Bank Indicators; Producer and Distributor; The World Bank: Washington, DC, USA, 2018; Available online: http://databank.worldbank.org/data/home.aspx (accessed on 19 June 2018).
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop. Water Requirements; FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1977; Volume 24, ISBN 92-5-100279-7. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Evapotranspiración del Cultivo Guías Para la Determinación de los Requerimientos de Agua de los Cultivos; FAO: Rome, Italy, 2006; pp. 1–322. [Google Scholar]
- CNR. Boletín N° 6: Coeficiente de Cultivo; CNR: Santiago, Chile, 2010; pp. 1–7. [Google Scholar]
- CNR. Boletín N° 2: Programación de Riego Usando Estaciones Meteorológicas Automáticas; CNR: Santiago, Chile, 2010; pp. 1–14. [Google Scholar]
- Melillán, C. Evapotranspiración de Referencia. Para la Determinación de las Demandas de Riego en Chile. 2018. Available online: http://agrimed.wixsite.com/riego/evapotranspiracin (accessed on 27 May 2018).
- Agromet Red Agroclimática Nacional. Available online: http://agromet.inia.cl/ (accessed on 1 July 2017).
- McMullen, B. Irrigation scheduling. In SOILpak for Vegetable Growers; Chapter D9; NSW Agriculture: Australia, 2000; ISBN 073109848X. [Google Scholar]
- Uribe, H.; Maldonado, I. Programación de Riego; Instituto nacional de Investigaciones Agropecuarias: Chillán, Chile, 2001. [Google Scholar]
- García, A.M.; García, I.F.; Poyato, E.C.; Barrios, P.M.; Díaz, J.R. Coupling irrigation scheduling with solar energy production in a smart irrigation management system. J. Clean. Prod. 2018, 175, 670–682. [Google Scholar] [CrossRef]
- Campana, P.E.; Zhu, Y.; Brugiati, E.; Li, H.; Yan, J. PV water pumping for irrigation equipped with a novel control system for water savings. Energy Procedia 2014, 61, 949–952. [Google Scholar] [CrossRef]
- Aliyu, M.; Hassan, G.; Said, S.A.; Siddiqui, M.U.; Alawami, A.T.; Elamin, I.M. A review of solar-powered water pumping systems. Renew. Sustain. Energy Rev. 2018, 87, 61–76. [Google Scholar] [CrossRef]
- Servicio Integral de Asesoramiento al Regante (SIAR). Eficiencia Energética en Instalaciones de Riego; Servicio Integral de Asesoramiento al Regante Consejería de Agricultura y Desarrollo Rural: Castilla-La Mancha, Spain, 2009; Volume 2, pp. 1–8. [Google Scholar]
- Adonis, R.; Arancibia, G. Manual Eficiencia Energética y Energías Renovables en el Sector Fruta Fresca; Fundación de Desarrollo Frutícola: Santiago, Chile, 2015. [Google Scholar]
- Explorador Solar. Available online: http://walker.dgf.uchile.cl/Explorador/Solar3/ (accessed on 27 May 2018).
- King, D.L.; Boyson, W.E.; Kratochvil, J.A. Photovoltaic Array Performance Model. Department of Energy, United States, 2004. Available online: http://prod.sandia.gov/techlib/access-control.cgi/2004/043535.pdf (accessed on 27 May 2018).
- Molina, A.; Falvey, M.; Rondanelli, R. A solar radiation database for Chile. Sci. Rep. 2017, 7, 14823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irmak, S.; Odhiambo, L.; Kranz, W.L.; Eisenhauer, D. Irrigation Efficiency and Uniformity, and Crop Water Use Efficiency. Biol. Syst. Eng. Pap. Publ. 2011, 451, 1–8. [Google Scholar]
- Ascough, G.W.; Kiker, G.A. The effect of irrigation uniformity on irrigation water requirements. Water SA 2002, 28, 235–242. [Google Scholar] [CrossRef]
- Shoeb, M.A.; Shafiullah, G.M. Renewable Energy Integrated Islanded Microgrid for Sustainable Irrigation—A Bangladesh Perspective. Energies 2018, 11, 1283. [Google Scholar] [CrossRef]
- Ebaid, M.S.Y.; Qandil, H.; Hammad, M. A unified approach for designing a photovoltaic solar system for the underground water pumping well-34 at Disi aquifer. Energy Convers. Manag. 2013, 75, 780–795. [Google Scholar] [CrossRef]
- Anis, W.R.; Nourz, M.A. Optimum design of a photovoltaic powered pumping system. Energy Convers. Manag. 1994, 35, 1123–1130. [Google Scholar] [CrossRef]
- Feron, S.; Heinrichs, H.; Cordero, R.R. Are the Rural Electrification Efforts in the Ecuadorian Amazon Sustainable? Sustainability 2016, 8, 443. [Google Scholar] [CrossRef]
- Jané La Torre, E.; Palacios, D. Estado Situacional de la Prestación del Servicio Electrico Mediante Sistemas Fotovoltaicos Autónomos; Gerencia de Fiscalización Eléctrica, Osinergmin: Lima, Peru, 2015. (In Spanish) [Google Scholar]
Characteristic | Atacama Region, Northern Chile | Maule Region, Southern Chile | ||
---|---|---|---|---|
EU 1 | EU 2 | EU 3 | EU 4 | |
Location | Punta Negra, Vallenar | Perales Sur, Vallenar | Chovellen, Pelluhue, Cauquenes | Polhuín, Chanco, Cauquenes |
Coordinate ** | 6,850,425 m N 362,461 m E | 6,809,078 m N 371,061 m E | 6,024,554 m N 710,224 m E | 6,036,350 m N 724,115 m E |
Surface Area (ha) | 0.80 | 0.87 | 0.30 | 0.50 |
Electricity Use (kWh/year) | 2212 | 2960 | 2941 | 678 |
Electricity Cost ($/year) | 593 | 817 | 650 | * 595 |
Electricity Price ($/kWh) | 0.268 | 0.276 | 0.221 | * 0.878 |
Month | Atacama Region | Maule Region | ||
---|---|---|---|---|
Table Grapes | Strawberries | |||
EU 1 | EU 2 | EU 3 | EU 4 | |
Hectares (ha) | 0.80 | 0.87 | 2.50 | 0.50 |
August | 224 | 244 | 0 | 0 |
September | 448 | 488 | 672 | 138 |
October | 784 | 854 | 784 | 161 |
November | 1400 | 1525 | 1344 | 276 |
December | 1624 | 1769 | 1568 | 322 |
January | 1064 | 1159 | 1344 | 276 |
February | 672 | 732 | 1008 | 207 |
March | 392 | 427 | 672 | 138 |
April | 0 | 0 | 112 | 23 |
Total (m3) | 6608 | 7198 | 7504 | 1541 |
EU | Pressure Heads (m H2O) | System Pressure Head (m H2O) | ||
---|---|---|---|---|
NGEs | Elevation Head | Pressure Drop | ||
EU 1 | 10 | 1 | 3 | 14 |
EU 2 | 10 | 1 | 3 | 14 |
EU 3 | 10 | 32 | 5 | 47 |
EU 4 | 10 | 1 | 3 | 14 |
Month | Northern Zone | Southern Zone | ||
---|---|---|---|---|
Table Grapes | Strawberry | |||
Maximum daily electricity demand (kWh/day) | 4.8 | 2.0 | ||
EU 1 | EU 2 | EU 3 | EU 4 | |
August | 19 | 21 | 0 | 0 |
September | 38 | 41 | 191 | 12 |
October | 66 | 72 | 223 | 14 |
November | 119 | 129 | 382 | 23 |
December | 138 | 150 | 446 | 27 |
January | 90 | 98 | 382 | 23 |
February | 57 | 62 | 287 | 18 |
March | 33 | 36 | 191 | 12 |
April | 0 | 0 | 32 | 2 |
Total (kWh/year) | 560 | 610 | 2134 | * 131 |
Total ($/year) | 150 | 168 | 472 | 115 |
$/kWh | 0.268 | 0.276 | 0.221 | * 0.878 |
Energy and Economic Parameters | EU 1 | EU 2 | EU 3 | EU 4 |
---|---|---|---|---|
Baseline—Year 0 | ||||
Electricity use (kWh/year) | 2212 | 2960 | 2941 | 678 |
Electricity cost ($/year) | 593 | 817 | 650 | * 595 |
Following implementation of energy-efficient actions—Year 1 | ||||
Electricity use (kWh/year) | 560 | 610 | 2134 | 131 |
Electricity cost ($/year) | 150 | 168 | 472 | * 115 |
Economical assessment | ||||
Savings energy-efficient actions ($) | 443 | 649 | 178 | * 547 |
Investment energy-efficient actions ($) | 1000 | 1000 | 1000 | 1000 |
Payback energy-efficient actions (years) | 2.3 | 1.5 | 5.6 | 1.8 |
Northern Chile | Southern Chile | ||
---|---|---|---|
Table Grapes | Strawberry | ||
EU 1 | EU 2 | EU 3 | EU 4 |
On-grid | Off-grid | On-grid | Off-grid |
Electricity demand | |||
EA—annual (kWh) | Ed—daily * (kWh) | EA—annual (kWh) | Ed—daily * (kWh) |
560 | 4.8 | 2134 | 2.0 |
Electricity generation PV—1 kWp ** | |||
E1kW,PV—annual (kWh) | W1kW,PV (kWh) | E1kW,PV—annual (kWh) | W1kW,PV (kWh) |
1875 | 0.62 | 1527 | 0.53 |
Electrical power required by the PV system (kWp) | |||
*** 0.36 | *** 1.86 | *** 1.68 | *** 0.91 |
**** 0.46 | **** 2.07 | **** 1.84 | **** 0.92 |
Energy and Economic Parameters | EU 1 | EU 2 | EU 3 | EU 4 |
---|---|---|---|---|
On-Grid | Off-Grid | On-Grid | Off-Grid | |
Following implementation of energy-efficient actions—Year 1 | ||||
Electricity use (kWh/year) | 560 | 610 | 2134 | 131 |
Electricity cost ($/year) | 150 | 168 | 472 | * 115 |
Following implementation of PV Systems—Year 2 | ||||
Electricity use (kWh/year) | 560 | 610 | 2134 | 131 |
Electricity cost ($/year) | 0 | 0 | 0 | 0 |
Economical assessment | ||||
Savings PV System ($) | 150 | 168 | 472 | 115 |
Investment PV System ($) | 1830 | 9638 | 3583 | 5100 |
Payback PV System (years) | 12.1 | 57.4 | 7.6 | 44.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrueto Guzmán, A.; Barraza Vicencio, R.; Ardila-Rey, J.A.; Núñez Ahumada, E.; González Araya, A.; Arancibia Moreno, G. A Cost-Effective Methodology for Sizing Solar PV Systems for Existing Irrigation Facilities in Chile. Energies 2018, 11, 1853. https://doi.org/10.3390/en11071853
Barrueto Guzmán A, Barraza Vicencio R, Ardila-Rey JA, Núñez Ahumada E, González Araya A, Arancibia Moreno G. A Cost-Effective Methodology for Sizing Solar PV Systems for Existing Irrigation Facilities in Chile. Energies. 2018; 11(7):1853. https://doi.org/10.3390/en11071853
Chicago/Turabian StyleBarrueto Guzmán, Aldo, Rodrigo Barraza Vicencio, Jorge Alfredo Ardila-Rey, Eduardo Núñez Ahumada, Arturo González Araya, and Gerardo Arancibia Moreno. 2018. "A Cost-Effective Methodology for Sizing Solar PV Systems for Existing Irrigation Facilities in Chile" Energies 11, no. 7: 1853. https://doi.org/10.3390/en11071853
APA StyleBarrueto Guzmán, A., Barraza Vicencio, R., Ardila-Rey, J. A., Núñez Ahumada, E., González Araya, A., & Arancibia Moreno, G. (2018). A Cost-Effective Methodology for Sizing Solar PV Systems for Existing Irrigation Facilities in Chile. Energies, 11(7), 1853. https://doi.org/10.3390/en11071853