Petrographic Controls on Pore and Fissure Characteristics of Coals from the Southern Junggar Coalfield, Northwest China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results and Discussion
4.1. Maceral Characteristics
4.2. Characteristics of Coal Facies
4.2.1. Coal Facies Indices
4.2.2. Depositional Environment of the Middle Jurassic Coals in Coal Seam No. 45
4.3. Pore and Fissure Structures Controlled by Coal Petrology
4.3.1. Control of Coal Macerals on Pore and Fissure Characteristics
4.3.2. Control of Coal Facies on Pore and Fissure Structures
4.3.3. Application to Coalbed Methane
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Ba | barkinite |
CD | collodetrinite |
CG | corpogelinite |
Cu | cutinite |
CT | collotelinite |
Fl | flourinite |
Fu | fusinite |
GI | gelification index |
GWI | ground water index |
I | inertinite |
ID | inertodetrinite |
J1b | Badaowan formation |
J1s | Sangonghe formation |
J2-3sh | Shishugou group |
J2x | Xishanyao formation |
L | liptinite |
LD | liptodetrinite |
Mi | micrinite |
mmf | mineral matter-free basis |
Om | other minerals |
P | pyrite |
P2cha | Xiachangfanggou group |
Re | resinite |
SF | semifusinite |
SJC | southern Junggar Coalfield |
Sp | sporinite |
T | telinite |
T2-3xq | Xiaoquangou group |
TPI | tissue preservation index |
V | vitrinite |
VD | vitrodetrinite |
VI | vegetation index |
Vol | volume |
VRmax | maximum reflectance of vitrinite |
References
- Zhao, L.; Qin, Y.; Cai, C.; Xie, Y.; Wang, G.; Huang, B.; Xu, C. Control of coal facies to adsorption-desorption divergence of coals: A case from the Xiqu Drainage Area, Gujiao CBM Block, North China. Int. J. Coal Geol. 2017, 171, 169–184. [Google Scholar] [CrossRef]
- Hou, H.; Shao, L.; Li, Y.; Li, Z.; Wang, S.; Zhang, W.; Wang, X. Influence of coal petrology on methane adsorption capacity of the Middle Jurassic coal in the Yuqia coalfield, northern Qaidam Basin, China. J. Petrol. Sci. Eng. 2017, 149, 218–227. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, D.; Liu, Z.; Zhou, Y.; Che, Y. Evolution of pore structure, submaceral composition and produced gases of two Chinese coals during thermal treatment. Fuel Process. Technol. 2016, 156, 298–309. [Google Scholar] [CrossRef]
- Hackley, P.C.; Warwick, P.D.; Breland, F.C., Jr. Organic petrology and coalbed gas content, Wilcox group (Paleocene-Eocene), northern Louisiana. Int. J. Coal Geol. 2007, 71, 54–71. [Google Scholar] [CrossRef]
- Suárez-Ruiz, I.; Flores, D.; Mendonça Filho, J.G.; Hackley, P.C. Review and update of the applications of organic petrology: Part 1, Geological Applications. Int. J. Coal Geol. 2012, 99, 54–112. [Google Scholar] [CrossRef]
- Mardon, S.M.; Eble, C.F.; Hower, J.C.; Takacs, K.; Mastalerz, M.; Bustin, R.M. Organic petrology, geochemistry, gas content and gas composition of Middle Pennsylvanian age coal beds in the Eastern Interior (Illinois) Basin: Implications for CBM development and carbon sequestration. Int. J. Coal Geol. 2014, 127, 56–74. [Google Scholar] [CrossRef]
- Flores, R.M. Coal and Coalbed Gas: Fueling the Future: Chapter 4-Coalification, Gasification, and Gas Storage; Elsevier: Waltham, MA, USA, 2014; pp. 167–233. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Bustin, R.M. Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin. Fuel 1996, 75, 1483–1498. [Google Scholar] [CrossRef]
- Cui, X.; Bustin, M.; Dipple, G. Differential transport of CO2 and CH4 in coalbed aquifers: Implications for coalbed gas distribution and composition. Int. J. Coal Geol. 2004, 88, 1149–1161. [Google Scholar] [CrossRef]
- Solano-Acosta, W.; Mastalerz, M.; Schimmelmann, A. Cleats and their relation to geologic lineaments and coalbed methane potential in Pennsylvanian coals in Indiana. Int. J. Coal Geol. 2007, 72, 187–208. [Google Scholar] [CrossRef]
- Dawson, G.K.W.; Esterle, J.S. Controls on coal cleat spacing. Int. J. Coal Geol. 2010, 82, 213–218. [Google Scholar] [CrossRef]
- Cardott, B.J.; Curtis, M.E. Identification and nanoporosity of macerals in coal by scanning electron microscopy. Int. J. Coal Geol. 2018, 190, 205–217. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, S.; Tang, D.; Pan, Z.; Yang, F. The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China. Int. J. Coal Geol. 2010, 81, 117–127. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Li, S.; Zhao, L.; Zhang, Y. Coal facies evolution of the main minable coal-bed in the Heidaigou Mine, Jungar Coalfield, Inner Mongolia, northern China. Sci. China Ser. D Earth Sci. 2007, 50, 144–152. [Google Scholar] [CrossRef]
- Karayiğit, A.I.; Bircan, C.; Mastalerz, M.; Oskay, R.G.; Querol, X.; Lieberman, N.R.; Türkmen, I. Coal characteristics, elemental composition and modes of occurrence of some elements in the İsaalan coal (Balıkesir, NW Turkey). Int. J. Coal Geol. 2017, 172, 43–59. [Google Scholar] [CrossRef]
- Karayiğit, A.İ.; Mastalerz, M.; Oskay, R.G.; Gayer, R.A. Coal petrography, mineralogy, elemental compositions and palaeoenvironmental interpretation of Late Carboniferous coal seams in three wells from the Kozlu coalfield (Zonguldak Basin, NW Turkey). Int. J. Coal Geol. 2018, 187, 54–70. [Google Scholar] [CrossRef]
- Çelik, Y.; Karayiğit, A.İ.; Querol, X.; Oskay, R.G.; Mastalerz, M.; Kayseri Özer, M.S. Coal characteristics, palynology, and palaeoenvironmental interpretation of the Yeniköy coal of Late Oligocene age in the Thrace Basin (NW Turkey). Int. J. Coal Geol. 2017, 181, 103–123. [Google Scholar] [CrossRef]
- Baboolal, A.A.; Littke, R.; Wilson, B.; Stock, A.T.; Knight, J. Petrographical and geochemical characterization of lignites, sub-bituminous coals and carbonaceous sediments from the Erin Formation, Southern Basin, Trinidad—Implications on microfacies, depositional environment and organic matter alteration. Int. J. Coal Geol. 2016, 163, 112–122. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.K. Petrography of selected Wilcox and Jockson Group lignites from Tertiary of Texas. In Geology of Gulf Coast Lignites; Finkelman, R.B., Casagrande, D.J., Eds.; Geological Society of America: Boulder, CO, USA, 1986; pp. 126–145. [Google Scholar]
- Diessel, C.F.K. The correlation between coal facies and depositional environments. In Advances in the study of the Sydney Basin; The University of Newcastle: Newcastle, UK, 1986; pp. 19–22. [Google Scholar]
- Oskay, R.G.; Christanis, K.; Inaner, H.; Salman, M.; Taka, M. Palaeoenvironmental reconstruction of the eastern part of the Karapınar-Ayrancı coal deposit (Central Turkey). Int. J. Coal Geol. 2016, 163, 100–111. [Google Scholar] [CrossRef]
- Gürdal, G.; Bozcu, M. Petrographic characteristics and depositional environment of Miocene Çan coals, Çanakkale-Turkey. Int. J. Coal Geol. 2011, 85, 143–160. [Google Scholar] [CrossRef]
- Sen, S.; Naskar, S.; Das, S. Discussion on the concepts in paleoenvironmental reconstruction from coal macerals and petrographic indices. Mar. Petrol. Geol. 2016, 73, 371–391. [Google Scholar] [CrossRef]
- Karayiğit, A.İ.; Littke, R.; Querol, X.; Jones, T.; Oskay, R.G.; Christanis, K. The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. Int. J. Coal Geol. 2017, 173, 110–128. [Google Scholar] [Green Version]
- Ivanova, A.; Zaitseva, L. Studies of the coal facies in Western Ukraine (the Lvov-Volyn basin). Int. J. Coal Geol. 2004, 58, 67–73. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Querol, X.; Font, O.; Moreno, N.; Zhou, J.; Lei, G. High quality of Jurassic Coals in the Southern and Eastern Junggar Coalfields, Xinjiang, NW China: Geochemical and mineralogical characteristics. Int. J. Coal Geol. 2012, 99, 1–15. [Google Scholar] [CrossRef]
- Shen, J.; Qin, Y.; Wang, J.; Shen, Y.; Wang, G. Peat-Forming Environments and Evolution of Thick Coal Seam in Shengli Coalfield, China: Evidence from Geochemistry, Coal Petrology, and Palynology. Minerals 2018, 8, 82. [Google Scholar] [CrossRef]
- Zhou, J.; Zhuang, X.; Alastuey, A.; Querol, X.; Li, J. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar Basin, Xinjiang province, China. Int. J. Coal Geol. 2010, 82, 51–67. [Google Scholar] [CrossRef]
- Li, B.; Guan, S.; Chen, Z.; He, D.; Shawe, J.; Lei, Y.; Shi, X.; Zhang, C. Fault-Related Fold Theory and Application: Case Study on Structural Geology in South Jungger Basin; Petroleum Industry Press: Beijing, China, 2010; pp. 47–110. [Google Scholar]
- Zhou, S.; Liu, D.; Cai, Y.; Yao, Y. Fractal characterization of pore-fracture in low-rank coals using a low-field NMR relaxation method. Fuel 2016, 181, 218–226. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, D.; Cai, Y.; Yao, Y. Gas sorption and flow capabilities of lignite, subbituminous and high-volatile bituminous coals in the Southern Junggar Basin, NW China. J. Nat. Gas Sci. Eng. 2016, 34, 6–21. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, M.; Ma, X.; Xu, W.; Zheng, G. Characteristics of mixed sporopollen assemblage from sediments of Dushanzi mud volcano in southern Junggar Basin and indication to the source of mud and debris ejecta. Mar. Petrol. Geol. 2017, 89, 194–201. [Google Scholar] [CrossRef]
- Shao, L.; Zhang, P.; Hilton, J.; Gayer, R.; Wang, Y.; Zhao, C.; Luo, Z. Paleoenvironments and paleogeography of the Lower and lower Middle Jurassic coal measures in the Turpan-Hami oil-prone coal basin, northwestern Ghina. AAPG Bull. 2003, 87, 335–355. [Google Scholar] [CrossRef]
- Wang, A.; Wei, Y.; Yuan, Y.; Li, C.; Li, Y.; Cao, D. Coalbed methane reservoirs’ pore-structure characterization of different macrolithotypes in the southern Junggar Basin of Northwest China. Mar. Petrol. Geol. 2017, 86, 675–688. [Google Scholar] [CrossRef]
- ISO. Methods for the Petrographic Analysis of Coals-Part 2: Methods of Preparing Coal Samples; ISO 7404-2; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- ISO. Methods for the Petrographic Analysis of Coals-Part 3: Method of Determining Maceral Group Composition; ISO 7404-3; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- ISO. Method for the Petrographic Analysis of Coals-Part 5: Method of Determining Microscopically the Reflectance of Vitrinite; ISO 7404-5; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Zhou, S.; Liu, D.; Cai, Y.; Yao, Y. Effects of the coalification jump on the petrophysical properties of lignite, subbituminous and high-volatile bituminous coals. Fuel 2017, 199, 219–228. [Google Scholar] [CrossRef]
- International Committee for Coal and Organic Petrology (ICCP). The new vitrinite classification (ICCP System 1994). Fuel 1998, 77, 349–358. [Google Scholar]
- Farhaduzzaman, M.; Wan, H.A.; Islam, M.A. Petrographic characteristics and palaeoenvironment of the Permian coal resources of the Barapukuria and Dighipara Basins, Bangladesh. J. Asian Earth Sci. 2013, 64, 272–287. [Google Scholar] [CrossRef]
- International Committee for Coal and Organic Petrology (ICCP). The new inertinite classification (ICCP system 1994). Fuel 2001, 80, 459–471. [Google Scholar]
- International Committee for Coal and Organic Petrology (ICCP). International Handbook of Coal Petrography, 2nd ed.; University of Newcastle upon Tyne: Newcastle, UK, 1993. [Google Scholar]
- Pickel, W.; Kus, J.; Flores, D.; Kalaitzidis, S.; Christanis, K.; Cardott, B.J.; Misz-Kennan, M.; Rodrigues, S.; Hentschel, A.; Hamor-Vido, M.; et al. Classification of liptinite—ICCP System 1994. Int. J. Coal Geol. 2017, 169, 40–61. [Google Scholar] [CrossRef]
- Weyland, H. Kritische Untersuchungen zur Kutikularanalyse tertiaerer Blaetter. Blatt V. Palaeontogr. Abt. B 1960, 106, 1–10. [Google Scholar]
- Wang, S.; Tang, Y.; Schobert, H.H.; Jiang, D.; Guo, X.; Huang, F.; Guo, Y.; Su, Y. Chemical compositional and structural characteristics of Late Permian bark coals from Southern China. Fuel 2014, 126, 116–121. [Google Scholar] [CrossRef]
- Sun, X. The optical features and hydrocarbon-generating model of “barkinite” from Late Permian coals in South China. Int. J. Coal Geol. 2002, 51, 251–261. [Google Scholar] [CrossRef]
- Taylor, G.H.; Teichmüller, M. Observations on fluorinite and fluorescent vitrinite with the transmission electron microscope (TEM). Int. J. Coal Geol. 1993, 22, 61–82. [Google Scholar] [CrossRef]
- Hutton, A.C.; Kantsler, A.J.; Cook, A.C.; McKirdy, D.M. Organic matter in oil shales. Aust. Petrol. Explor. Assoc. J. 1980, 20, 44–67. [Google Scholar] [CrossRef]
- Goodarzi, F. Organic petrology of Hat Creek Coal deposit No 1, British Columbia. Int. J. Coal Geol. 1985, 5, 377–396. [Google Scholar] [CrossRef]
- Singh, M.P.; Singh, P.K. Petrographic characterization and evolution of the Permian coal deposits of the Rajmahal basin, Bihar, India. Int. J. Coal Geol. 1996, 29, 93–118. [Google Scholar] [CrossRef]
- Bechtel, A.; Karayiğit, A.I.; Sachsenhofer, R.F.; İnaner, H.; Christanis, K.; Gratzer, R. Spatial and temporal variability in vegetation and coal facies as reflected by organic petrological and geochemical data in the Middle Miocene Çayirhan coal field (Turkey). Int. J. Coal Geol. 2014, 134, 46–60. [Google Scholar] [CrossRef]
- Calder, J.H.; Gibling, M.R.; Mukhopadhyay, P.K. Peat formation in a Westphalian B piedmont setting, Cumberland Basin, Nova Scotia: Implications for the maceralbased interpretation of rheotrophic and raised paleomires. Bull. Soc. Géol. Fr. 1991, 162, 283–298. [Google Scholar]
- Yang, Q.; Liu, D.; Huang, W.; Che, Y.; Hu, B.; Wei, Y. Coalbed Methane Geology and Resources Comprehensive Evaluation in Northwest China; Geological Publishing House: Beijing, China, 2005; pp. 77–151. (In Chinese) [Google Scholar]
CBM Blocks | Sample No. | Vitrinite (vol %, mmf) | Inertinite (vol %, mmf) | Liptinite (vol %, mmf) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | CT | CD | CG | VD | Fu | SF | Mi | ID | Sp | Cu | Ba | Re | Fl | LD | ||
Wusu | WQ1 | 18.6 | 11.4 | 4.4 | 2.8 | 12.3 | 4.1 | 4.9 | - | 1.2 | 2.1 | 31.7 | 2.8 | 0.3 | - | 3.4 |
WQ2 | 14.9 | 17.1 | 8.6 | 1.3 | 20.9 | 1.2 | 1.7 | - | 0.7 | 1.8 | 24.6 | 2.4 | 1.5 | - | 3.3 | |
WS1 | 17.7 | 20.6 | 10.5 | 2.7 | 36.4 | 1.5 | 2 | - | 0.5 | 1.8 | 3.2 | 0.4 | - | 2.7 | ||
WS2 | 15.9 | 21.1 | 8.7 | 1.8 | 23.5 | 2.4 | 15 | - | 6.6 | 1.4 | 1.7 | 0.3 | 0.2 | 0.1 | 1.3 | |
Shihezi | SS1 | 18.7 | 29.9 | 2.7 | 1.4 | 9.9 | 3.8 | 28.5 | - | 3.6 | 0.7 | - | - | 0.1 | - | 0.5 |
SS2 | 16.9 | 35 | 3.4 | 2.3 | 7.6 | 5.7 | 21.3 | - | 4.7 | 1.2 | 0.2 | - | 0.2 | - | 1.5 | |
Hutubi | HX1 | 17.2 | 6.3 | 3.0 | 1.6 | 21.6 | 2.4 | 38.7 | - | 3.5 | 2.2 | - | - | 0.2 | 0.2 | 3.1 |
HX2 | 13.2 | 16.5 | 5.3 | 1.2 | 12 | 3.8 | 37.9 | - | 7.1 | 0.3 | 0.7 | - | 0.1 | 0.1 | 1.8 | |
HD1 | 25.7 | 14.2 | 3.7 | 2.3 | 18.9 | 2.2 | 24.4 | 1.2 | 4.8 | 0.3 | - | - | 0.1 | 0.1 | 1.7 | |
HD2 | 27.4 | 13.5 | 1.6 | 2.0 | 18.3 | 1.4 | 26.9 | 1.9 | 5.8 | 0.2 | 0.2 | - | 0.2 | 0.1 | 0.5 | |
Changji | CL1 | 17.6 | 32 | 8.1 | 3.7 | 11.2 | 2.1 | 19.4 | 1.7 | 2.5 | 0.8 | - | - | - | 0.2 | 0.7 |
CL2 | 24.2 | 17.5 | 5.7 | 2.4 | 17.5 | 1.8 | 24.3 | - | 3 | 1.5 | 1.2 | - | 0.1 | - | 0.8 | |
CL3 | 41.4 | 16.7 | 6.9 | 4.0 | 29.1 | 0.5 | 1.2 | - | 0.2 | 2.4 | 6.7 | - | - | 0.2 | 1.0 | |
CL4 | 40.1 | 3 | 7.6 | 2.4 | 25.5 | 2.6 | 3.3 | - | 2.1 | 4.3 | 7.9 | - | - | 0.3 | 0.9 | |
CT1 | 28.6 | 2.7 | 4.5 | 1.6 | 15.6 | 3.7 | 30.2 | - | 5.3 | 3.1 | 0.2 | 2.4 | 0.2 | 0.1 | 1.8 | |
CT2 | 24.9 | 1.2 | 2.6 | 3.4 | 24.7 | 4.0 | 29.3 | - | 6.7 | 1.5 | 0.1 | 0.2 | 0.2 | 1.2 | ||
Urumqi | UT1 | 3.4 | 36 | 11.6 | 2.5 | 7.2 | 3.8 | 28.4 | 0.2 | 3.4 | 2.4 | - | - | 0.1 | - | 1.1 |
UT2 | 12.6 | 41 | 7.1 | 0.7 | 8.7 | 2.6 | 19.1 | 0.3 | 5.3 | 1.4 | - | - | 0.2 | - | 1.0 | |
UX1 | 27.5 | 12.1 | 2.4 | 5.4 | 44.8 | 0.3 | 1.3 | - | 0.7 | 1.8 | 2.4 | - | 0.1 | - | 1.2 | |
Fukang | FF1 | 20.3 | 38.7 | 5.1 | 10.3 | 14.8 | - | 0.2 | - | 2.4 | 2.6 | 3.2 | 0.2 | 0.2 | - | 1.5 |
FF2 | 25.4 | 14.1 | 4.3 | 6.4 | 38.9 | - | 2.4 | - | 0.5 | 2.7 | 3.5 | 0.3 | 0.1 | - | 1.2 | |
FJ1 | 30.6 | 10.5 | 7.1 | 4.1 | 35 | 0.2 | 4.8 | - | 0.3 | 2.1 | 3.0 | 0.2 | 0.1 | - | 2.1 | |
FJ2 | 24.3 | 26.1 | 11.4 | 5.6 | 20.2 | 1.7 | 2 | - | 0.5 | 1.7 | 3.6 | 0.2 | 0.2 | - | 2.5 | |
FW1 | 21.6 | 39.7 | 11.2 | 3.7 | 27.3 | 1.0 | 1.8 | - | 0.7 | - | - | - | - | - | - | |
Qitai | QH1 | 4.2 | 27.7 | 2.8 | 2.7 | 19.9 | 2.8 | 27 | - | 9.5 | - | 1.6 | - | - | - | 1.8 |
QH2 | 2.6 | 44.8 | 5.6 | 2.0 | 11.7 | 5.4 | 22.6 | - | 4.8 | - | 0.5 | - | - | - | - | |
QY1 | 3.1 | 50.6 | 4.0 | 1.7 | 12.3 | 3.3 | 23 | - | 2.0 | - | - | - | - | - | - | |
QY2 | 5.8 | 36.7 | 8.4 | 1.0 | 12.7 | 5.0 | 25.6 | - | 3.6 | 0.3 | - | 0.1 | - | - | 0.5 | |
QB1 | 16.5 | 32.6 | 7.0 | 1.4 | 13.5 | 4.3 | 16.9 | - | 5.8 | 0.9 | - | 0.1 | - | - | 1.0 | |
QB2 | 10.4 | 27.3 | 4.4 | 2.6 | 20.7 | 3.0 | 27.7 | - | 2.7 | 0.7 | - | 0.2 | - | - | 0.3 |
Sample No. | Lithotype | VRmax (%) | Coal Mass Compositions (vol %) | Coal Facies Indices | Coal Facies Type | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
V | I | L | P | Om | TPI | GI | VI | GWI | ||||
WQ1 | Dull | 0.33 | 38.4 | 5.9 | 29.9 | 0.7 | 25.2 | 1.9 | 4.8 | 0.8 | 1.4 | 1 |
WQ2 | Dull | 0.32 | 50.7 | 2.9 | 27.1 | 0.5 | 18.7 | 1.1 | 17.3 | 0.6 | 1.1 | 1 |
WS1 | Semi-bright | 0.45 | 75.1 | 3.4 | 6.9 | 0.3 | 14.3 | 0.8 | 21.8 | 0.8 | 1.1 | 1 |
WS2 | Semi-bright | 0.42 | 59.5 | 15.1 | 3.9 | 0.3 | 21.1 | 1.3 | 2.6 | 1.3 | 1 | 1 |
SS1 | Semi-bright | 0.62 | 65.9 | 18.5 | 1.3 | 1.5 | 12.8 | 4.6 | 1.6 | 4.7 | 0.4 | 4 |
SS2 | Semi-bright | 0.58 | 60.6 | 19.4 | 2.6 | 1.2 | 16.2 | 4.4 | 1.9 | 4.4 | 0.5 | 4 |
HX1 | Semi-bright | 0.63 | 62.1 | 14.9 | 4.7 | 0.2 | 18.2 | 2.2 | 1 | 2 | 1.5 | 2 |
HX2 | Semi-bright | 0.65 | 47.6 | 18.6 | 2 | 0.2 | 31.5 | 2.8 | 0.9 | 2.7 | 1.6 | 2 |
HD1 | Semi-bright | 0.65 | 62.8 | 12.1 | 1.7 | 0.1 | 23.3 | 2.2 | 2 | 2.3 | 1.1 | 2 |
HD2 | Semi-bright | 0.63 | 67.5 | 12.7 | 1.0 | 0.2 | 18.6 | 2.5 | 1.7 | 2.7 | 0.9 | 2 |
CL1 | Semi-dull | 0.63 | 77.5 | 9.6 | 1.5 | 0.4 | 11.1 | 2.8 | 2.8 | 3.2 | 0.4 | 3 |
CL2 | Semi-bright | 0.49 | 40.5 | 10.2 | 3 | 0.5 | 14.8 | 2.4 | 1.9 | 2.4 | 0.6 | 3 |
CL3 | Semi-dull | 0.39 | 75 | 1.5 | 7.9 | 2.1 | 21.4 | 1.5 | 51.6 | 1.4 | 1 | 2 |
CL4 | Semi-dull | 0.46 | 51.7 | 5.3 | 8.8 | 4.0 | 30.2 | 1.3 | 9.6 | 1.1 | 1.5 | 1 |
CT1 | Semi-dull | 0.44 | 50.8 | 12.1 | 5.3 | 0.4 | 31.9 | 2.4 | 1.3 | 2.2 | 1.7 | 2 |
CT2 | Semi-dull | 0.41 | 46.2 | 13.1 | 2 | 0.5 | 38.2 | 1.6 | 1.3 | 1.7 | 3 | 2 |
UT1 | Semi-dull | 0.6 | 41.2 | 18.9 | 2.2 | 0.7 | 37 | 2.9 | 1.6 | 2.9 | 1.3 | 2 |
UT2 | Semi-dull | 0.64 | 47.7 | 16.9 | 1.7 | 0.5 | 33.1 | 3.5 | 2.4 | 3.2 | 0.9 | 2 |
UX1 | Semi-bright | 0.51 | 72.4 | 1.2 | 4.3 | 10.6 | 11.4 | 0.8 | 39 | 0.9 | 1.8 | 1 |
FF1 | Semi-bright | 0.53 | 72.9 | 2.1 | 6.3 | 4.3 | 14.0 | 1.8 | 34.2 | 2.4 | 0.7 | 3 |
FF2 | Semi-bright | 0.46 | 67.2 | 2.3 | 5.9 | 3.6 | 21.0 | 0.8 | 30.5 | 0.9 | 1.8 | 1 |
FJ1 | Semi-bright | 0.53 | 69.8 | 4.2 | 6 | 2.2 | 17.8 | 1 | 16.2 | 1 | 1.3 | 1 |
FJ2 | Semi-bright | 0.51 | 80.8 | 2.9 | 7.5 | 1.3 | 7.5 | 1.4 | 20.8 | 1.5 | 0.6 | 3 |
FW1 | Semi-bright | 0.51 | 86.8 | 2.7 | - | 0.2 | 9.2 | 1.5 | 29.4 | 1.7 | 0.6 | 3 |
QH1 | Dull | 0.49 | 51.9 | 27.8 | 2.8 | 0.1 | 17.5 | 1.8 | 1.2 | 1.8 | 1 | 3 |
QH2 | Semi-bright | 0.49 | 72.5 | 20.7 | 0.5 | 0.1 | 5.3 | 3.1 | 1.9 | 3.4 | 0.3 | 3 |
QY1 | Semi-dull | 0.4 | 68.8 | 11.4 | - | 1.2 | 18.6 | 4 | 2.3 | 4.5 | 0.6 | 4 |
QY2 | Dull | 0.46 | 62.8 | 18.5 | 1 | 0.2 | 17.5 | 2.8 | 1.7 | 2.9 | 0.6 | 3 |
QB1 | Semi-dull | 0.41 | 64 | 13.0 | 1.6 | 0.8 | 20.6 | 2.5 | 2.3 | 2.5 | 0.6 | 3 |
QB2 | Dull | 0.51 | 71.5 | 8.3 | 1 | 0.3 | 18.9 | 2.3 | 1.4 | 2.5 | 0.7 | 3 |
Average | - | 0.51 | 62.1 | 10.9 | 5.4 | 1.3 | 19.9 | 2.2 | 10.3 | 2.2 | 1.1 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Liu, D.; Cai, Y.; Karpyn, Z.; Yao, Y. Petrographic Controls on Pore and Fissure Characteristics of Coals from the Southern Junggar Coalfield, Northwest China. Energies 2018, 11, 1556. https://doi.org/10.3390/en11061556
Zhou S, Liu D, Cai Y, Karpyn Z, Yao Y. Petrographic Controls on Pore and Fissure Characteristics of Coals from the Southern Junggar Coalfield, Northwest China. Energies. 2018; 11(6):1556. https://doi.org/10.3390/en11061556
Chicago/Turabian StyleZhou, Sandong, Dameng Liu, Yidong Cai, Zuleima Karpyn, and Yanbin Yao. 2018. "Petrographic Controls on Pore and Fissure Characteristics of Coals from the Southern Junggar Coalfield, Northwest China" Energies 11, no. 6: 1556. https://doi.org/10.3390/en11061556
APA StyleZhou, S., Liu, D., Cai, Y., Karpyn, Z., & Yao, Y. (2018). Petrographic Controls on Pore and Fissure Characteristics of Coals from the Southern Junggar Coalfield, Northwest China. Energies, 11(6), 1556. https://doi.org/10.3390/en11061556