Biofuel and Biochemical Analysis of Amphora coffeaeformis RR03, a Novel Marine Diatom, Cultivated in an Open Raceway Pond
Abstract
:1. Introduction
2. Results
2.1. Mass Cultivation of A. coffeaeformis RR03
2.2. Biochemical Parameter Study on 1.0 m2 in Open Pond
2.3. Effect of CO2 Supplementation on A. coffeaeformis RR03
2.3.1. Biomass Production and Biochemical Study in 10.0 m2 Open Pond
2.3.2. Electro-Clarification
2.3.3. Dewatering of Biomass
2.4. Hydro Thermochemical Liquefaction Process (HTL)
2.4.1. Effect of Different Temperatures, Durations, and Pressures on Biocrude Yield of A. coffeaeformis RR03
2.4.2. Elemental Analysis and C:N Ratio of Dry Biomass
2.4.3. Elemental Analysis and C:N Ratio of Biocrude from Diatoms at Different Conditions
2.4.4. Fatty Acid Contents
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Isolation of Microalgae
4.2. Identification of Microalgal Isolates
4.3. Mass Cultivation of Amphora Coffeaeformis RR03 in an Open Raceway Pond
4.4. Details of Raceway Ponds
4.5. Sterilization of Medium
4.6. Determination of Chlorine
4.7. Preparation of Inoculum in 1.0 m2 and 10.0 m2 Raceway Pond
4.8. Harvesting of Biomass
4.9. Hydro Thermochemical Liquefaction (HTL)
4.10. Effect of Different Temperatures, Durations, and Pressure on Biocrude Yield of A. coffeaeformis RR03
4.11. Direct Biomass Acid Transesterification
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zeng, X.; Danquah, M.K.; Chen, X.D.; Lu, Y. Microalgae bioengineering: From CO2 fixation to biofuel production. Renew. Sustain. Energy Rev. 2011, 15, 3252–3260. [Google Scholar] [CrossRef]
- Hildebrand, M.; Davis, A.K.; Smith, S.R.; Traller, J.C.; Abbriano, R. The place of diatoms in the biofuels industry. Biofuels 2012, 3, 221–240. [Google Scholar] [CrossRef]
- De Bhowmick, G.; Subramanian, G.; Mishra, S.; Sen, R. Raceway pond cultivation of a marine microalga of indian origin for biomass and lipid production: A case study. Algal Res. 2014, 6, 201–209. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T.; Mohamed, A.R. Current status and challenges on microalgae-based carbon capture. Int. J. Greenh. Gas Control 2012, 10, 456–469. [Google Scholar] [CrossRef]
- Kumar, V.; Karela, R.P.; Korstad, J.; Kumar, S.; Srivastava, R.; Bauddh, K. Ecological, Economical and Life Cycle Assessment of Algae and Its Biofuel. In Algal Biofuels; Springer: Cham, Switzerland, 2017; pp. 451–466. [Google Scholar]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Sakthivel, R. Microalgae lipid research, past, present: A critical review for biodiesel production, in the future. J. Exp. Sci. 2011, 2, 10. [Google Scholar]
- Sforza, E.; Bertucco, A.; Morosinotto, T.; Giacometti, G. Vegetal oil from microalgae: Species selection and optimization of growth parameters. Chem. Eng. Trans. 2010, 20, 199–204. [Google Scholar]
- Alcaine, A.A. Biodiesel from microalgae. Universitat Politècnica de Catalunya. Escola Universitàriad’Enginyeria Tècnica Industrial d’Igualada; ET Industrial, especialitat en Química Industrial: Barcelona, Spain, 2010. [Google Scholar]
- Rawat, I.; Kumar, R.R.; Mutanda, T.; Bux, F. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy 2013, 103, 444–467. [Google Scholar] [CrossRef]
- Kwietniewska, E.; Tys, J. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew. Sustain. Energy Rev. 2014, 34, 491–500. [Google Scholar] [CrossRef]
- Ansell, A.; Raymont, J.; Lander, K.; Crowley, E.; Shackley, P. Studies on the mass culture of Phaeodactylum. Ii. The growth of Phaeodactylum and other species in outdoor tanks. Limnol. Oceanogr. 1963, 8, 184–206. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Commercial production of microalgae: Ponds, tanks, tubes and fermenters. J. Biotechnol. 1999, 70, 313–321. [Google Scholar] [CrossRef]
- James, C.M.; Al-Khars, A. An intensive continuous culture system using tubular photobioreactors for producing microalgae. Aquaculture 1990, 87, 381–393. [Google Scholar] [CrossRef]
- Riebesell, U. Effects of CO2 enrichment on marine phytoplankton. J. Oceanogr. 2004, 60, 719–729. [Google Scholar] [CrossRef]
- Uduman, N.; Qi, Y.; Danquah, M.K.; Forde, G.M.; Hoadley, A. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2010, 2, 012701. [Google Scholar] [CrossRef]
- Danquah, M.K.; Ang, L.; Uduman, N.; Moheimani, N.; Forde, G.M. Dewatering of microalgal culture for biodiesel production: Exploring polymer flocculation and tangential flow filtration. J. Chem. Technol. Biotechnol. 2009, 84, 1078–1083. [Google Scholar] [CrossRef]
- Zhang, F.C.; Cheng, L.; Xu, X.; Zhang, L.; Chen, H. Technologies of microalgal harvesting and lipid extraction. Prog. Chem. 2012, 24, 2062–2072. [Google Scholar]
- Becker, E.W. Microalgae: Biotechnology and Microbiology; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Guillard, R.R.; Ryther, J.H. Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and Detonulaconfervacea (cleve) gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Al-Kandari, M.; Al-Yamani, F.; Al-Rifaie, K. Marine phytoplankton atlas of Kuwait waters. In Marine Phytoplankton Atlas; Kuwait Institute for Scientific Research: Safat, Kuwait, 2009; ISBN 99906–99941. [Google Scholar]
- Sournia, A. Phytoplankton Manual; UNESCO: Paris, French, 2013. [Google Scholar]
- Jeffrey, S.T.; Humphrey, G. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Moheimani, N.R. The Culture of Coccolithophorid Algae for Carbon Dioxide Bioremediation. Ph.D. Thesis, Murdoch University, Perth, Australia, 2005. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Li, Q.; Du, W.; Liu, D. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol. 2008, 80, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.B.; Wen, Z. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels 2009, 23, 5179–5183. [Google Scholar] [CrossRef]
A. coffeaeformis RR03 Cultivation Conditions | Biomass Productivity (g L−1 d−1) | Lipid Productivity (mg L−1 d−1) | Lipid (%) Content in Ash Free Biomass | Biomass (g L−1) | Vol. Productivity (g L−1 d−1) | Areal Productivity (g L−1 m2 d−1) | Drybiomass (Kg) |
---|---|---|---|---|---|---|---|
Modified RRAC I medium in 1.0 m2 pond | 0.054 ± 0.01 | 9.93 ± 0.05 | 23.83 ± 3.36 | 0.81 ± 0.03 | 0.031 | 4.65 | 0.192 |
F/2 medium in 1.0 m2 pond | 0.043 ± 0.03 | 15.88 ± 0.08 | 21.35 ± 2.44 | 0.79 ± 0.01 | 0.029 | 4.35 | 0.161 |
Modified RRAC I medium in 10.0 m2 pond with (CO2) | 0.071 ± 0.01 | 7.60 ± 0.05 | 36.16 ± 2.54 | 1.5 ± 0.10 | 0.065 | 9.75 | 2.250 |
Modified RRAC I medium in 10.0 m2 pond (without CO2) | 0.046 ± 0.02 | 21.88 ± 0.15 | 18.68 ± 3.36 | 0.93 ± 0.02 | 0.028 | 4.20 | 1.395 |
Dry Biomass (g) | Ash Free Biomass (g) | Distilled Water (mL) | Temp. (°C) | Duration (min) | Pressure (psi) | Biocrude Yield/Ash Free Biomass (%) |
---|---|---|---|---|---|---|
80 | 30.96 | 400 | 280 | 10 | 70.6 | 29.39 |
80 | 30.96 | 400 | 300 | 15 | 97.5 | 33.26 |
80 | 30.96 | 400 | 330 | 10 | 141.1 | 30.36 |
80 | 30.96 | 400 | 350 | 15 | 171.1 | 39.40 |
Experimental Condition | C | H | N | S | O | C/N Ratio | Energy Value (Mega Joules) |
---|---|---|---|---|---|---|---|
A. coffeaeformis RR03 in F/2 medium 1.0 m2 pond | 16.36 | 3.28 | 1.99 | 1.05 | 77.32 | 8.22 | 3.48 |
A. coffeaeformis RR03 in modified CFTRI-RRAC I medium in 1.0 m2 pond | 14.86 | 3.03 | 1.78 | 0.95 | 79.38 | 8.35 | 4.72 |
Experimental Condition | C | H | N | S | O | C/N Ratio | Energy (Mega Joules) |
---|---|---|---|---|---|---|---|
A. coffeaeformis RR03 in F/2 medium 1.0 m2 open raceway pond condition: 350 °C for 15 min at 171.1 psi | 75.87 | 8.93 | 2.39 | 0.30 | 12.51 | 31.74 | 31.70 |
A. coffeaeformis RR03 grown in modified CFTRI-RRAC I medium in 1.0 m2 raceway pond: 350 °C for 15 min at 171.1 psi | 77.36 | 6.82 | 4.36 | 1.53 | 9.93 | 17.74 | 36.19 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajaram, M.G.; Nagaraj, S.; Manjunath, M.; Boopathy, A.B.; Kurinjimalar, C.; Rengasamy, R.; Jayakumar, T.; Sheu, J.-R.; Li, J.-Y. Biofuel and Biochemical Analysis of Amphora coffeaeformis RR03, a Novel Marine Diatom, Cultivated in an Open Raceway Pond. Energies 2018, 11, 1341. https://doi.org/10.3390/en11061341
Rajaram MG, Nagaraj S, Manjunath M, Boopathy AB, Kurinjimalar C, Rengasamy R, Jayakumar T, Sheu J-R, Li J-Y. Biofuel and Biochemical Analysis of Amphora coffeaeformis RR03, a Novel Marine Diatom, Cultivated in an Open Raceway Pond. Energies. 2018; 11(6):1341. https://doi.org/10.3390/en11061341
Chicago/Turabian StyleRajaram, Muthu Ganesan, Subramani Nagaraj, Manubolu Manjunath, Annakkili Baskara Boopathy, Chidambaram Kurinjimalar, Ramasamy Rengasamy, Thanasekaran Jayakumar, Joen-Rong Sheu, and Jiun-Yi Li. 2018. "Biofuel and Biochemical Analysis of Amphora coffeaeformis RR03, a Novel Marine Diatom, Cultivated in an Open Raceway Pond" Energies 11, no. 6: 1341. https://doi.org/10.3390/en11061341
APA StyleRajaram, M. G., Nagaraj, S., Manjunath, M., Boopathy, A. B., Kurinjimalar, C., Rengasamy, R., Jayakumar, T., Sheu, J.-R., & Li, J.-Y. (2018). Biofuel and Biochemical Analysis of Amphora coffeaeformis RR03, a Novel Marine Diatom, Cultivated in an Open Raceway Pond. Energies, 11(6), 1341. https://doi.org/10.3390/en11061341