The Application of Cyber Physical System for Thermal Power Plants: Data-Driven Modeling
Abstract
:1. Introduction
2. General Methodology for Applying CPS to Thermal Power Plants
2.1. Preprocessing Historical Data (A1)
2.1.1. Attribute Selection Based on the Business Target
2.1.2. The Selection of the Historical Samples Based on Timeliness
2.1.3. The Enhancement of Data Quality
2.2. Regression Model Establishment (A2)
2.2.1. Physical Modeling or Thermodynamic Modeling
2.2.2. Machine Learning
2.3. Offline Model Validation (A3)
2.4. Preprocessing of the Real-Time Data (B1)
2.5. Online Performance Analysis and Decision Making (B2)
2.6. Model Updates (B3)
3. Case Study: The Application to Turbine Subsystem and Air Cooling Condenser
3.1. The Physical Layer
3.2. The Cyber Layer
3.2.1. The Offline Phase for Performance Prediction of the Turbine Subsystem and ACC
3.2.2. The Online Phase and Decision Making of Optimal Air-Fan Frequency
4. Discussion: The Combination of Mathematical Algorithms and Physical Knowledge
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kumar, R. A critical review on energy, exergy, exergoeconomic and economic (4-E) analysis of thermal power plants. Eng. Sci. Technol. Int. J. 2017, 20, 283–292. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Dong, C.; Morosuk, T.; Tsatsaronis, G. Multi-objective optimization of coal-fired power plants using differential evolution. Appl. Energy 2014, 115, 254–264. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Dong, C.; Xu, G.; Morosuk, T.; Tsatsaronis, G. Comprehensive exergy-based evaluation and parametric study of a coal-fired ultra-supercritical power plant. Appl. Energy 2013, 112, 1087–1099. [Google Scholar] [CrossRef]
- Wang, L.; Wu, L.; Xu, G.; Dong, C.; Yang, Y. Calculation and analysis of energy consumption interactions in thermal systems of large-scale coal-fired steam power generation units. Proc. Chin. Soc. Electr. Eng. 2012, 32, 9–14. [Google Scholar]
- Wang, L.; Yang, Y.; Morosuk, T.; Tsatsaronis, G. Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant. Energies 2012, 5, 1850–1863. [Google Scholar] [CrossRef]
- Huang, S.; Li, C.; Tan, T.; Fu, P.; Wang, L.; Yang, Y. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle. Entropy 2018, 20, 89. [Google Scholar] [CrossRef]
- Khaitan, S.K.; McCalley, J.D. Design techniques and applications of cyberphysical systems: A survey. IEEE Syst. J. 2015, 9, 350–365. [Google Scholar] [CrossRef]
- Arghandeh, R.; Meier, A.V.; Mehrmanesh, L.; Mili, L. On the definition of cyber-physical resilience in power systems. Renew. Sustain. Energy Rev. 2016, 58, 1060–1069. [Google Scholar] [CrossRef]
- Xie, Y.; Zeng, G.; Ryo, K.; Xie, G.; Dou, Y.; Zhou, Z. An optimized design of CAN FD for automotive cyber-physical systems. J. Syst. Archit. 2017, 81 (Suppl. C), 101–111. [Google Scholar] [CrossRef]
- Jezewski, J.; Pawlak, A.; Horoba, K.; Wrobel, J.; Czabanski, R.; Jezewski, M. Selected design issues of the medical cyber-physical system for telemonitoring pregnancy at home. Microprocess. Microsyst. 2016, 46, 35–43. [Google Scholar] [CrossRef]
- Liu, H.; Sun, D.; Liu, W. Lattice hydrodynamic model based traffic control: A transportation cyber–physical system approach. Phys. A: Stat. Mech. Appl. 2016, 461 (Suppl. C), 795–801. [Google Scholar] [CrossRef]
- Wan, Y.; Cao, J.; Zhang, S.; Tu, G.; Lu, C.; Xu, X.; Li, K. An integrated cyber-physical simulation environment for smart grid applications. Tsinghua Sci. Technol. 2014, 19, 133–143. [Google Scholar]
- Saber, A.Y.; Venayagamoorthy, G.K. Efficient utilization of renewable energy sources by gridable vehicles in cyber-physical energy systems. IEEE Syst. J. 2010, 4, 285–294. [Google Scholar] [CrossRef]
- Al Faruque, M.A.; Ahourai, F. A model-based design of cyber-physical energy systems. In Proceedings of the 2014 19th Asia and South Pacific, Design Automation Conference (ASP-DAC), Singapore, 20–23 January 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 97–104. [Google Scholar]
- Cheng, Z.; Shein, W.W.; Tan, Y.; Lim, A.O. Energy efficient thermal comfort control for cyber-physical home system. In Proceedings of the 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 21–24 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 797–802. [Google Scholar]
- Schmidt, M.; Moreno, M.V.; Schülke, A.; Macek, K.; Mařík, K.; Pastor, A.G. Optimizing legacy building operation: The evolution into data-driven predictive cyber-physical systems. Energy Build. 2017, 148 (Suppl. C), 257–279. [Google Scholar] [CrossRef]
- Hamdaoui, Y.; Maach, A. Energy Efficiency Approach for Smart Building in Islanding Mode Based on Distributed Energy Resources. In Proceedings of the International Conference on Advanced Information Technology, Services and Systems, Tangier, Morocco, 14–15 April 2017; Springer: Berlin, Germany, 2017; pp. 36–49. [Google Scholar]
- Maffei, A.; Srinivasan, S.; Meola, D.; Palmieri, G.; Iannelli, L.; Holhjem, Ø.H.; Mafafioti, G.; Mathisen, G.; Glielmo, L. A Cyber-Physical Systems Approach for Implementing the Receding Horizon Optimal Power Flow in Smart Grids. IEEE Trans. Sustain. Comput. 2017. [Google Scholar] [CrossRef]
- Gomes, I.L.R.; Pousinho, H.M.I.; Melíco, R.; Mendes, V.M.F. Bidding and Optimization Strategies for Wind-PV Systems in Electricity Markets Assisted by CPS. Energy Procedia 2016, 106 (Suppl. C), 111–121. [Google Scholar] [CrossRef]
- Yamanishi, K.; Takeuchi, J.-I. Discovering outlier filtering rules from unlabeled data: Combining a supervised learner with an unsupervised learner. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2001; ACM: New York, NY, USA, 2001; pp. 389–394. [Google Scholar]
- Fawzy, A.; Mokhtar, H.M.O.; Hegazy, O. Outliers detection and classification in wireless sensor networks. Egypt. Inform. J. 2013, 14, 157–164. [Google Scholar] [CrossRef]
- Parimala, M.; Lopez, D.; Senthilkumar, N.C. A Survey on Density Based Clustering Algorithms for Mining Large Spatial Databases. Int. J. Adv. Sci. Technol. 2011, 31, 59–66. [Google Scholar]
- Said, A.M.; Dominic, D.D.; Samir, B.B. Outlier Detection Scoring Measurements Based on Frequent Pattern Technique. Res. J. Appl. Sci. Eng. Technol. 2013, 6, 1341–1347. [Google Scholar] [CrossRef]
- Maciá-Pérez, F.; Berna-Martinez, J.V.; Fernández Oliva, A.; Abreu Ortega, M.A. Algorithm for the detection of outliers based on the theory of rough sets. Decis. Support Syst. 2015, 75 (Suppl. C), 63–75. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Kavitha, T. Outlier Detection Using Support Vector Machine in Wireless Sensor Network Real Time Data. Int. J. Soft Comput. Eng. 2011, 1, 81–86. [Google Scholar]
- Nam, H.; Sugiyama, M. Direct density ratio estimation with convolutional neural networks with application in outlier detection. IEICE Trans. Inf. Syst. 2015, 98, 1073–1079. [Google Scholar] [CrossRef]
- Rigamonti, M.; Baraldi, P.; Zio, E.; Alessi, A.; Astigarraga, D.; Galarza, A. Identification of the degradation state for condition-based maintenance of insulated gate bipolar transistors: A self-organizing map approach. Microelectron. Reliab. 2016, 60 (Suppl. C), 48–61. [Google Scholar] [CrossRef]
- Wang, L.; Lampe, M.; Voll, P.; Yang, Y.; Bardow, A. Multi-objective superstructure-free synthesis and optimization of thermal power plants. Energy 2016, 116, 1104–1116. [Google Scholar] [CrossRef]
- Wang, L.; Voll, P.; Lampe, M.; Yang, Y.; Bardow, A. Superstructure-free synthesis and optimization of thermal power plants. Energy 2015, 91, 700–711. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Dong, C.; Morosuk, T.; Tsatsaronis, G. Systematic Optimization of the Design of Steam Cycles Using MINLP and Differential Evolution. ASME J. Energy Resour. Technol. 2014, 136, 031601. [Google Scholar] [CrossRef]
- Negri, E.; Fumagalli, L.; Macchi, M. A Review of the Roles of Digital Twin in CPS-based Production Systems. Procedia Manuf. 2017, 11 (Suppl. C), 939–948. [Google Scholar] [CrossRef]
- Fu, P.; Wang, N.; Wang, L.; Morosuk, T.; Yang, Y.; Tsatsaronis, G. Performance degradation diagnosis of thermal power plants: A method based on advanced exergy analysis. Energy Convers. Manag. 2016, 130, 219–229. [Google Scholar] [CrossRef]
- Wang, L.; Fu, P.; Wang, N.; Morosuk, T.; Yang, Y.; Tsatsaronis, G. Malfunction diagnosis of thermal power plants based on advanced exergy analysis: The case with multiple malfunctions occurring simultaneously. Energy Convers. Manag. 2017, 148, 1453–1467. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Iribarren, D.; Dufour, J. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach. Sci. Total Environ. 2018, 615, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. Thermo-Economic Evaluation, Optimization and Synthesis of Large-Scale Coal-Fired Power Plants. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2016. [Google Scholar]
- Losing, V.; Hammer, B.; Wersing, H. Incremental on-line learning: A review and comparison of state of the art algorithms. Neurocomputing 2018, 275 (Suppl. C), 1261–1274. [Google Scholar] [CrossRef]
- Fontenla-Romero, O.; Pérez-Sánchez, B.; Guijarro-Berdiñas, B. An incremental non-iterative learning method for one-layer feedforward neural networks. Appl. Soft Comput. 2017. [Google Scholar] [CrossRef]
- Kumar, A.; Joshi, J.B.; Nayak, A.K.; Vijayan, P.K. A review on the thermal hydraulic characteristics of the air-cooled heat exchangers in forced convection. Sadhana 2015, 40, 673–755. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Zeng, D.; Wang, W. Optimization of an air-cooling system and its application to grid stability. Appl. Therm. Eng. 2013, 61, 206–212. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 27. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; Wang, L.; Kantor, I.; Robineau, J.-L.; Yang, Y.; Maréchal, F. A data-driven model for the air-cooling condenser of thermal power plants based on data reconciliation and support vector regression. Appl. Therm. Eng. 2018, 129 (Suppl. C), 1496–1507. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, P.; Li, Z. A data reconciliation based framework for integrated sensor and equipment performance monitoring in power plants. Appl. Energy 2014, 134, 270–282. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; Wang, L.; Yang, Y.; Maréchal, F. Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants. Appl. Energy 2018, 209, 153–166. [Google Scholar] [CrossRef]
- Rossi, F.; Velázquez, D.; Monedero, I.; Biscarri, F. Artificial neural networks and physical modeling for determination of baseline consumption of CHP plants. Expert Syst. Appl. 2014, 41, 4658–4669. [Google Scholar] [CrossRef]
- Naik, B.K.; Muthukumar, P. Empirical Correlation Based Models for Estimation of Air Cooled and Water Cooled Condenser’s Performance. Energy Procedia 2017, 109, 293–305. [Google Scholar] [CrossRef]
- Azadeh, A.; Saberi, M.; Anvari, M.; Azaron, A.; Mohammadi, M. An adaptive network based fuzzy inference system-genetic algorithm clustering ensemble algorithm for performance assessment and improvement of conventional power plants. Expert Syst. Appl. Int. J. 2011, 38, 2224–2234. [Google Scholar] [CrossRef]
- Du, X.; Liu, L.; Xi, X.; Yang, L.; Yang, Y.; Liu, Z.; Zhang, X.; Yu, C.; Du, J. Back pressure prediction of the direct air cooled power generating unit using the artificial neural network model. App. Therm. Eng. 2011, 31, 3009–3014. [Google Scholar] [CrossRef]
- Hernández, J.A.; Colorado, D.; Cortés-Aburto, O.; El Hamzaoui, Y.; Velazquez, V.; Alonso, B. Inverse neural network for optimal performance in polygeneration systems. Appl. Therm. Eng. 2013, 50, 1399–1406. [Google Scholar] [CrossRef]
- Yoo, K.H.; Back, J.H.; Na, M.G.; Kim, J.H.; Hur, S.; Kim, C.H. Prediction of golden time using SVR for recovering SIS under severe accidents. Ann. Nucl. Energy 2016, 94, 102–108. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, Y.; Zhang, T.; Yang, Y. Data Mining-Based Operation Optimization of Large Coal-Fired Power Plants. AASRI Procedia 2012, 3, 607–612. [Google Scholar] [CrossRef]
- Xu, J.; Gu, Y.; Chen, D.; Li, Q. Data mining based plant-level load dispatching strategy for the coal-fired power plant coal-saving: A case study. Appl. Therm. Eng. 2017, 119, 553–559. [Google Scholar] [CrossRef]
- Capozzoli, A.; Lauro, F.; Khan, I. Fault Detection Analysis Using Data Mining Techniques for a Cluster of Smart Office Buildings; Pergamon Press, Inc.: Oxford, UK, 2015; pp. 4324–4338. [Google Scholar]
- Yan, L.; Hu, P.; Li, C.; Yao, Y.; Xing, L.; Lei, F.; Zhu, N. The performance prediction of ground source heat pump system based on monitoring data and data mining technology. Energy Build. 2016, 127, 1085–1095. [Google Scholar] [CrossRef]
Load factor | ||||||||
---|---|---|---|---|---|---|---|---|
Real | 59.6% | 23.8 °C | 6.9 m/s | 37.1 Hz | 15.15 kPa | 421.3 MW | 3.2 MW | 418.1 MW |
Optimal | 59.6% | 23.8 °C | 6.9 m/s | 49.0 Hz | 10.98 kPa | 429.6 MW | 7.3 MW | 422.3 MW |
Authors | Application Field | Method for Selecting Attributes | Method for Building the Regression Model |
---|---|---|---|
Jiang et al. [42] | Modeling feedwater preheater and extraction steam pipe | Component physics | Dominant factor modeling (Belongs to physical modeling) |
Li et al. [43] | Modeling air cooling-condenser | Component physics | Physical modeling |
Rossi et al. [44] | Determining the baseline energy consumption of combined heat and power plant | System physics | A comparison between physical model and neural network |
Naik [45] | Modeling heat rejection capacity of air cooling condenser | Variance analysis | Correlation-based models (similar to linear regression) |
Azadeh [46] | Electrical power generated from thermal power plants | Knowledge based | Adaptive-network-based fuzzy inference system (ANFIS) |
Du et al. [47] | Modeling direct air cooling condenser of coal-fired power plant | Grey correlation degree | Neural network |
Hernández et al. [48] | Modeling Water purification process, single-stage heat transformer and compressor. | Component physics and experiment | Neural network |
Yoo et al. [49] | Modeling loss-of-coolant-accident situation of Nuclear power plants | Correlation coefficient (Pearson) | Support vector regression |
Wang et al. [50] | Modeling coal consumption rate of coal-fired power plant | Fuzzy rough set method | Support vector regression |
Li et al. [41] | Modeling air cooling-condenser | Component physics | Support vector regression |
Xu et al. [51] | Modeling power supply and coal consumption rate of coal-fired power plant | Grey correlation degree | Particle Swarm Optimization based Support Vector Machine |
Capozzoli et al. [52] | Energy fault detection analysis for a cluster of buildings | Knowledge based | A combination of Classification and Regression Trees (CART) and Artificial neural networks |
Yan et al. [53] | Modeling ground source heat pump | Correlation coefficient (Pearson) | A comparison between Support vector machine, neural network and decision tree |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, X.; Yang, Z.; Wei, Q.; Wang, N.; Wang, L. The Application of Cyber Physical System for Thermal Power Plants: Data-Driven Modeling. Energies 2018, 11, 690. https://doi.org/10.3390/en11040690
Yang Y, Li X, Yang Z, Wei Q, Wang N, Wang L. The Application of Cyber Physical System for Thermal Power Plants: Data-Driven Modeling. Energies. 2018; 11(4):690. https://doi.org/10.3390/en11040690
Chicago/Turabian StyleYang, Yongping, Xiaoen Li, Zhiping Yang, Qing Wei, Ningling Wang, and Ligang Wang. 2018. "The Application of Cyber Physical System for Thermal Power Plants: Data-Driven Modeling" Energies 11, no. 4: 690. https://doi.org/10.3390/en11040690
APA StyleYang, Y., Li, X., Yang, Z., Wei, Q., Wang, N., & Wang, L. (2018). The Application of Cyber Physical System for Thermal Power Plants: Data-Driven Modeling. Energies, 11(4), 690. https://doi.org/10.3390/en11040690