Next Article in Journal
Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery
Previous Article in Journal
A Real-Time Accurate Model and Its Predictive Fuzzy PID Controller for Pumped Storage Unit via Error Compensation
Article Menu
Issue 1 (January) cover image

Export Article

Erratum published on 16 July 2018, see Energies 2018, 11(7), 1856.

Open AccessArticle
Energies 2018, 11(1), 37; https://doi.org/10.3390/en11010037

Comparative Modeling of a Parabolic Trough Collectors Solar Power Plant with MARS Models

1
Department of Exploitation and Prospection of Mining, University of Oviedo, 33004 Asturias, Spain
2
NORMAGRUP TECHNOLOGY S.A. Llanera, 33420 Asturias, Spain
3
Department of Electrical Engineering, University of Oviedo, 33004 Asturias, Spain
*
Author to whom correspondence should be addressed.
Received: 3 October 2017 / Revised: 18 December 2017 / Accepted: 19 December 2017 / Published: 25 December 2017
Full-Text   |   PDF [4997 KB, uploaded 18 July 2018]   |  

Abstract

Power plants producing energy through solar fields use a heat transfer fluid that lends itself to be influenced and changed by different variables. In solar power plants, a heat transfer fluid (HTF) is used to transfer the thermal energy of solar radiation through parabolic collectors to a water vapor Rankine cycle. In this way, a turbine is driven that produces electricity when coupled to an electric generator. These plants have a heat transfer system that converts the solar radiation into heat through a HTF, and transfers that thermal energy to the water vapor heat exchangers. The best possible performance in the Rankine cycle, and therefore in the thermal plant, is obtained when the HTF reaches its maximum temperature when leaving the solar field (SF). In addition, it is necessary that the HTF does not exceed its own maximum operating temperature, above which it degrades. The optimum temperature of the HTF is difficult to obtain, since the working conditions of the plant can change abruptly from moment to moment. Guaranteeing that this HTF operates at its optimal temperature to produce electricity through a Rankine cycle is a priority. The oil flowing through the solar field has the disadvantage of having a thermal limit. Therefore, this research focuses on trying to make sure that this fluid comes out of the solar field with the highest possible temperature. Modeling using data mining is revealed as an important tool for forecasting the performance of this kind of power plant. The purpose of this document is to provide a model that can be used to optimize the temperature control of the fluid without interfering with the normal operation of the plant. The results obtained with this model should be necessarily contrasted with those obtained in a real plant. Initially, we compare the PID (proportional–integral–derivative) models used in previous studies for the optimization of this type of plant with modeling using the multivariate adaptive regression splines (MARS) model. View Full-Text
Keywords: multivariate adaptive regression splines; thermal power plant; heat transfer fluid (HTF); parabolic trough collectors; solar field multivariate adaptive regression splines; thermal power plant; heat transfer fluid (HTF); parabolic trough collectors; solar field
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Rogada, J.R.; Barcia, L.A.; Martinez, J.A.; Menendez, M.; de Cos Juez, F.J. Comparative Modeling of a Parabolic Trough Collectors Solar Power Plant with MARS Models. Energies 2018, 11, 37.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top