Next Article in Journal
Using a Hybrid Cost-FMEA Analysis for Wind Turbine Reliability Analysis
Previous Article in Journal
An Efficient Phase-Locked Loop for Distorted Three-Phase Systems
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle
Energies 2017, 10(3), 277; doi:10.3390/en10030277

A Refined Self-Tuning Filter-Based Instantaneous Power Theory Algorithm for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filters under Non-sinusoidal Source Voltage Conditions

Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
*
Author to whom correspondence should be addressed.
Academic Editor: Akhtar Kalam
Received: 10 January 2017 / Revised: 16 February 2017 / Accepted: 21 February 2017 / Published: 27 February 2017
View Full-Text   |   Download PDF [4299 KB, uploaded 1 March 2017]   |  

Abstract

In this paper, a refined reference current generation algorithm based on instantaneous power (pq) theory is proposed, for operation of an indirect current controlled (ICC) three-level neutral-point diode clamped (NPC) inverter-based shunt active power filter (SAPF) under non-sinusoidal source voltage conditions. SAPF is recognized as one of the most effective solutions to current harmonics due to its flexibility in dealing with various power system conditions. As for its controller, pq theory has widely been applied to generate the desired reference current due to its simple implementation features. However, the conventional dependency on self-tuning filter (STF) in generating reference current has significantly limited mitigation performance of SAPF. Besides, the conventional STF-based pq theory algorithm is still considered to possess needless features which increase computational complexity. Furthermore, the conventional algorithm is mostly designed to suit operation of direct current controlled (DCC) SAPF which is incapable of handling switching ripples problems, thereby leading to inefficient mitigation performance. Therefore, three main improvements are performed which include replacement of STF with mathematical-based fundamental real power identifier, removal of redundant features, and generation of sinusoidal reference current. To validate effectiveness and feasibility of the proposed algorithm, simulation work in MATLAB-Simulink and laboratory test utilizing a TMS320F28335 digital signal processor (DSP) are performed. Both simulation and experimental findings demonstrate superiority of the proposed algorithm over the conventional algorithm. View Full-Text
Keywords: current harmonics; distorted supply voltage; multilevel inverter; power electronics; power quality; reactive power compensation current harmonics; distorted supply voltage; multilevel inverter; power electronics; power quality; reactive power compensation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Hoon, Y.; Mohd Radzi, M.A.; Hassan, M.K.; Mailah, N.F. A Refined Self-Tuning Filter-Based Instantaneous Power Theory Algorithm for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filters under Non-sinusoidal Source Voltage Conditions. Energies 2017, 10, 277.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top