Next Article in Journal
Assessing the Feasibility of Global Long-Term Mitigation Scenarios
Previous Article in Journal
Structural Identifiability of Equivalent Circuit Models for Li-Ion Batteries
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Energies 2017, 10(1), 92; doi:10.3390/en10010092

A States of Matter Search-Based Approach for Solving the Problem of Intelligent Power Allocation in Plug-in Hybrid Electric Vehicles

Departamento de Electrónica, Universidad de Guadalajara, CUCEI Av. Revolución 1500, 44430 Guadalajara, Mexico
*
Authors to whom correspondence should be addressed.
Academic Editor: Hongwen He
Received: 12 December 2016 / Revised: 12 December 2016 / Accepted: 20 December 2016 / Published: 13 January 2017
View Full-Text   |   Download PDF [1474 KB, uploaded 13 January 2017]   |  

Abstract

Recently, many researchers have proved that the electrification of the transport sector is a key for reducing both the emissions of green-house pollutants and the dependence on oil for transportation. As a result, Plug-in Hybrid Electric Vehicles (or PHEVs) are receiving never before seen increased attention. Consequently, large-scale penetration of PHEVs into the market is expected to take place in the near future, however, an unattended increase in the PHEVs needs may cause several technical problems which could potentially compromise the stability of power systems. As a result of the growing necessity for addressing such issues, topics related to the optimization of PHEVs’ charging infrastructures have captured the attention of many researchers. Related to this, several state-of-the-art swarm optimization methods (such as the well-known Particle Swarm Optimization (PSO) or the recently proposed Gravitational Search Algorithm (GSA) approach) have been successfully applied in the optimization of the average State of Charge (SoC), which represents one of the most important performance indicators in the context of PHEVs’ intelligent power allocation. Many of these swarm optimization methods, however, are known to be subject to several critical flaws, including premature convergence and a lack of balance between the exploration and exploitation of solutions. Such problems are usually related to the evolutionary operators employed by each of the methods on the exploration and exploitation of new solutions. In this paper, the recently proposed States of Matter Search (SMS) swarm optimization method is proposed for maximizing the average State of Charge of PHEVs within a charging station. In our experiments, several different scenarios consisting on different numbers of PHEVs were considered. To test the feasibility of the proposed approach, comparative experiments were performed against other popular PHEVs’ State of Charge maximization approaches based on swarm optimization methods. The results obtained on our experimental setup show that the proposed SMS-based SoC maximization approach has an outstanding performance in comparison to that of the other compared methods, and as such, proves to be superior for tackling the challenging problem of PHEVs’ smart charging. View Full-Text
Keywords: Plug-in Hybrid Electric Vehicles (PHEV); smart grid; particle swarm optimization (PSO); intelligent management; gravitational search (GSA); state of matter search (SMS); nature-inspired Plug-in Hybrid Electric Vehicles (PHEV); smart grid; particle swarm optimization (PSO); intelligent management; gravitational search (GSA); state of matter search (SMS); nature-inspired
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Valdivia-Gonzalez, A.; Zaldívar, D.; Fausto, F.; Camarena, O.; Cuevas, E.; Perez-Cisneros, M. A States of Matter Search-Based Approach for Solving the Problem of Intelligent Power Allocation in Plug-in Hybrid Electric Vehicles. Energies 2017, 10, 92.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top