Next Article in Journal
Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota
Previous Article in Journal
Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus—A Prospect
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Mar. Drugs 2017, 15(4), 90; doi:10.3390/md15040090

Anti-Obesity and Anti-Diabetic Effect of Neoagarooligosaccharides on High-Fat Diet-Induced Obesity in Mice

1
Department of Biological Science and Bioinformatics, Myongji University, 116 Myongji-Ro, Cheoin-gu, Yongin, Gyeonggido 17058, Korea
2
Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Korea
*
Author to whom correspondence should be addressed.
Received: 9 December 2016 / Revised: 9 March 2017 / Accepted: 16 March 2017 / Published: 23 March 2017
View Full-Text   |   Download PDF [2156 KB, uploaded 24 March 2017]   |  

Abstract

Neoagarooligosaccharides (NAOs), mainly comprising neoagarotetraose and neoagarohexaose, were prepared by hydrolyzing agar with β-agarase DagA from Streptomyces coelicolor, and the anti-obesity and anti-diabetic effects of NAOs on high-fat diet (HFD)-induced obesity in mice were investigated after NAOs-supplementation for 64 days. Compared to the HFD group, the HFD-0.5 group that was fed with HFD + NAOs (0.5%, w/w) showed remarkable reduction of 36% for body weight gain and 37% for food efficiency ratios without abnormal clinical signs. Furthermore, fat accumulation in the liver and development of macrovesicular steatosis induced by HFD in the HFD-0.5 group were recovered nearly to the levels found in the normal diet (ND) group. NAOs intake could also effectively reduce the size (area) of adipocytes and tissue weight gain in the perirenal and epididymal adipose tissues. The increased concentrations of total cholesterol, triglyceride, and free fatty acid in serum of the HFD group were also markedly ameliorated to the levels found in serum of the ND group after NAOs-intake in a dose dependent manner. In addition, insulin resistance and glucose intolerance induced by HFD were distinctly improved, and adiponectin concentration in the blood was notably increased. All these results strongly suggest that intake of NAOs can effectively suppress obesity and obesity-related metabolic syndromes, such as hyperlipidemia, steatosis, insulin resistance, and glucose intolerance, by inducing production of adiponectin in the HFD-induced obese mice. View Full-Text
Keywords: neoagarooligosaccharides; neoagarotetraose; neoagarohexaose; anti-obesity; antidiabetes; DagA; agar neoagarooligosaccharides; neoagarotetraose; neoagarohexaose; anti-obesity; antidiabetes; DagA; agar
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Hong, S.J.; Lee, J.-H.; Kim, E.J.; Yang, H.J.; Park, J.-S.; Hong, S.-K. Anti-Obesity and Anti-Diabetic Effect of Neoagarooligosaccharides on High-Fat Diet-Induced Obesity in Mice. Mar. Drugs 2017, 15, 90.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top