Int. J. Mol. Sci. 2006, 7(9), 320-345; doi:10.3390/i7090320
Article

Ballistic Protons and Microwave-induced Water Solitons in Bioenergetic Transformations

email
Received: 11 July 2006; in revised form: 21 September 2006 / Accepted: 22 September 2006 / Published: 26 September 2006
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Active streaming (AS) of liquid water is considered to generate and overcomepressure gradients, so as to drive cell motility and muscle contraction by hydrauliccompression. This idea had led to reconstitution of cytoplasm streaming and musclecontraction by utilizing the actin-myosin ATPase system in conditions that exclude acontinuous protein network. These reconstitution experiments had disproved a contractileprotein mechanism and inspired a theoretical investigation of the AS hypothesis, aspresented in this article. Here, a molecular quantitative model is constructed for a chemicalreaction that might generate the elementary component of such AS within the pure waterphase. Being guided by the laws of energy and momentum conservation and by the physicalchemistry of water, a vectorial electro-mechano-chemical conversion is considered, asfollows: A ballistic H+ may be released from H2O-H+ at a velocity of 10km/sec, carrying akinetic energy of 0.5 proton*volt. By coherent exchange of microwave photons during 10-10sec, the ballistic proton can induce cooperative precession of about 13300 electrically-polarized water molecule dimers, extending along 0.5 μm. The dynamic dimers rearrangealong the proton path into a pile of non-radiating rings that compose a persistent rowing-likewater soliton. During a life-time of 20 msec, this soliton can generate and overcome amaximal pressure head of 1 kgwt/cm2 at a streaming velocity of 25 μm/sec and intrinsicpower density of 5 Watt/cm3. In this view, the actin-myosin ATPase is proposed to catalyzestereo-specific cleavage of H2O-H+ , so as to generate unidirectional fluxes of ballisticprotons and water solitons along each actin filament. Critical requirements and evidentialpredictions precipitate consistent implications to the physical chemistry of water, enzymatichydrolysis and synthesis of ATP, trans-membrane signaling, intracellular transport, cellmotility, intercellular interaction, and associated electro-physiological function. Sarcomerecontraction is described as hydraulic compression, driven by the suction power of centrally-oriented AS. This hydraulic mechanism anticipates structural, biochemical, mechanical and energetic aspects of striated muscle contraction, leading to quantitative formulation of a hydrodynamic power-balance equation yielding a general force-velocity relation.
Keywords: ballistic protons; water solitons; hydraulic compression; physical chemistry of water; ATP hydrolysis; motor proteins; cytoplasm streaming; cell motility; muscle contraction; bioenergetics.
PDF Full-text Download PDF Full-Text [227 KB, uploaded 19 June 2014 00:03 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Tirosh, R. Ballistic Protons and Microwave-induced Water Solitons in Bioenergetic Transformations. Int. J. Mol. Sci. 2006, 7, 320-345.

AMA Style

Tirosh R. Ballistic Protons and Microwave-induced Water Solitons in Bioenergetic Transformations. International Journal of Molecular Sciences. 2006; 7(9):320-345.

Chicago/Turabian Style

Tirosh, Reuven. 2006. "Ballistic Protons and Microwave-induced Water Solitons in Bioenergetic Transformations." Int. J. Mol. Sci. 7, no. 9: 320-345.

Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert