Molecular Determinants of Uterine Receptivity: Comparison of Successful Implantation, Recurrent Miscarriage, and Recurrent Implantation Failure
Abstract
:1. Introduction
2. Estrogen, Progesterone, and Their Receptors
2.1. Estrogen and RPL
2.2. Progesterone and RPL
2.3. Estrogen, Progesterone, and RIF
3. Molecular and Cellular Events Involved in Successful Embryo Implantation
3.1. IL-6, IL-8, and RPL
3.2. IL-6 and RIF
3.3. IL-6, IL-8, and RIF
3.4. LIF and RPL
3.5. LIF and RIF
3.6. IL-11 and RPL
3.7. IL-11 and RIF
3.8. IL-1 and RPL
3.9. IL-1 and RIF
3.10. Glycodelin
3.11. Glycodelin and RPL
3.12. Glycodelin and RIF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IL | interleukin |
LIF | leukemia inhibitory factor |
RIF | recurrent implantation failure |
RPL | recurrent pregnancy loss |
WOI | window of implantation |
ER | estrogen receptor |
PR | progesterone receptor |
hCG | human chorionic gonadotropin |
ART | assisted reproductive technology |
LH | luteinizing hormone |
JAK | Janus kinase |
STAT | signal transducer and activator of transcription |
IL-6R | IL-6α-receptor |
INF-γ | interferon-γ |
TGF | transforming growth factor |
IVF | in vitro fertilization |
ICSI | intracytoplasmic sperm injection |
TNF | tumor necrosis factor |
KLF12 | Krüppel-like factor 12 |
IL-11Rα | IL-11 receptor |
PGE2 | prostaglandin E2 |
IL-1R1 | IL-1 receptor type 1 |
IL-1R2 | IL-1 receptor type 2 |
IL-1Ra | IL-1 receptor antagonist |
Th1/2 | Type 1 T helper cells and type 2 T helper cells |
References
- Mrozikiewicz, A.E.; Ozarowski, M.; Jedrzejczak, P. Biomolecular Markers of Recurrent Implantation Failure—A Review. Int. J. Mol. Sci. 2021, 22, 82. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.A.; Hunt, J.S. The role of integrins in reproduction. Proc. Soc. Exp. Biol. Med. 2000, 223, 331–343. [Google Scholar] [CrossRef] [PubMed]
- D’Occhio, M.J.; Campanile, G.; Zicarelli, L.; Visintin, J.A.; Baruselli, P.S. Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation-role in establishing a pregnancy in cattle: A review. Mol. Reprod. Dev. 2020, 87, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Gunther, V.; Alkatout, I.; Meyerholz, L.; Maass, N.; Gorg, S.; von Otte, S.; Ziemann, M. Live Birth Rates after Active Immunization with Partner Lymphocytes. Biomedicines 2021, 9, 1350. [Google Scholar] [CrossRef] [PubMed]
- Gunther, V.; Alkatout, I.; Junkers, W.; Maass, N.; Ziemann, M.; Gorg, S.; von Otte, S. Active Immunisation with Partner Lymphocytes in Female Patients Who Want to Become Pregnant—Current Status. Geburtsh. Frauenheilkd. 2018, 78, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Achache, H.; Revel, A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum. Reprod. Update 2006, 12, 731–746. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Ma, X.; Jia, W.; Su, Y. Determining Diagnostic Criteria of Unexplained Recurrent Implantation Failure: A Retrospective Study of Two vs. Three or More Implantation Failure. Front. Endocrinol. 2021, 12, 619437. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2020, 113, 533–535. [Google Scholar] [CrossRef]
- Bashiri, A.; Halper, K.I.; Orvieto, R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reprod. Biol. Endocrinol. RBE 2018, 16, 121. [Google Scholar] [CrossRef]
- Deng, T.; Liao, X.; Zhu, S. Recent Advances in Treatment of Recurrent Spontaneous Abortion. Obstet. Gynecol. Surv. 2022, 77, 355–366. [Google Scholar] [CrossRef]
- La, X.; Wang, W.; Zhang, M.; Liang, L. Definition and Multiple Factors of Recurrent Spontaneous Abortion. Adv. Exp. Med. Biol. 2021, 1300, 231–257. [Google Scholar] [CrossRef] [PubMed]
- Paulson, R.J. Hormonal induction of endometrial receptivity. Fertil. Steril. 2011, 96, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wolfe, A.; Wang, X.; Chang, C.; Yeh, S.; Radovick, S. Generation and characterization of a complete null estrogen receptor alpha mouse using Cre/LoxP technology. Mol. Cell. Biochem. 2009, 321, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.R.; Kim, T.H.; Choi, K.C. Functions and physiological roles of two types of estrogen receptors, ERalpha and ERbeta, identified by estrogen receptor knockout mouse. Lab. Anim. Res. 2012, 28, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Massimiani, M.; Lacconi, V.; La Civita, F.; Ticconi, C.; Rago, R.; Campagnolo, L. Molecular Signaling Regulating Endometrium-Blastocyst Crosstalk. Int. J. Mol. Sci. 2019, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Lydon, J.P.; DeMayo, F.J.; Funk, C.R.; Mani, S.K.; Hughes, A.R.; Montgomery, C.A., Jr.; Shyamala, G.; Conneely, O.M.; O’Malley, B.W. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995, 9, 2266–2278. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.W.M.; Rong, T. Serum estradiol level in pregnant women of four to eight weeks and its relationship with threatened abortion. J. Shandong Univ. (Health Sci.) 2008, 46, 884–886. [Google Scholar]
- Zhang, W.; Tian, Y.; Xie, D.; Miao, Y.; Liu, J.; Wang, X. The impact of peak estradiol during controlled ovarian stimulation on the cumulative live birth rate of IVF/ICSI in non-PCOS patients. J. Assist. Reprod. Genet. 2019, 36, 2333–2344. [Google Scholar] [CrossRef]
- Deng, W.; Sun, R.; Du, J.; Wu, X.; Ma, L.; Wang, M.; Lv, Q. Prediction of miscarriage in first trimester by serum estradiol, progesterone and beta-human chorionic gonadotropin within 9 weeks of gestation. BMC Pregnancy Childbirth 2022, 22, 112. [Google Scholar] [CrossRef]
- Patel, B.; Elguero, S.; Thakore, S.; Dahoud, W.; Bedaiwy, M.; Mesiano, S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum. Reprod. Update 2015, 21, 155–173. [Google Scholar] [CrossRef]
- Coomarasamy, A.; Harb, H.M.; Devall, A.J.; Cheed, V.; Roberts, T.E.; Goranitis, I.; Ogwulu, C.B.; Williams, H.M.; Gallos, I.D.; Eapen, A.; et al. Progesterone to prevent miscarriage in women with early pregnancy bleeding: The PRISM RCT. Health Technol. Assess. 2020, 24, 1–70. [Google Scholar] [CrossRef]
- Devall, A.J.; Papadopoulou, A.; Podesek, M.; Haas, D.M.; Price, M.J.; Coomarasamy, A.; Gallos, I.D. Progestogens for preventing miscarriage: A network meta-analysis. Cochrane Database Syst. Rev. 2021, 4, CD013792. [Google Scholar] [CrossRef]
- Parisi, F.; Fenizia, C.; Introini, A.; Zavatta, A.; Scaccabarozzi, C.; Biasin, M.; Savasi, V. The pathophysiological role of estrogens in the initial stages of pregnancy: Molecular mechanisms and clinical implications for pregnancy outcome from the periconceptional period to end of the first trimester. Hum. Reprod. Update 2023, 29, 699–720. [Google Scholar] [CrossRef]
- Long, N.; Liu, N.; Liu, X.L.; Li, J.; Cai, B.Y.; Cai, X. Endometrial expression of telomerase, progesterone, and estrogen receptors during the implantation window in patients with recurrent implantation failure. Genet. Mol. Res. GMR 2016, 15, 15027849. [Google Scholar] [CrossRef]
- Vagnini, L.D.; Renzi, A.; Petersen, B.; Canas, M.; Petersen, C.G.; Mauri, A.L.; Mattila, M.C.; Ricci, J.; Dieamant, F.; Oliveira, J.B.A.; et al. Association between estrogen receptor 1 (ESR1) and leukemia inhibitory factor (LIF) polymorphisms can help in the prediction of recurrent implantation failure. Fertil. Steril. 2019, 111, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Jarczak, D.; Nierhaus, A. Cytokine Storm-Definition, Causes, and Implications. Int. J. Mol. Sci. 2022, 23, 11740. [Google Scholar] [CrossRef] [PubMed]
- Rose-John, S. Interleukin-6 Family Cytokines. Cold Spring Harb. Perspect. Biol. 2018, 10, a028415. [Google Scholar] [CrossRef] [PubMed]
- Vilotic, A.; Nacka-Aleksic, M.; Pirkovic, A.; Bojic-Trbojevic, Z.; Dekanski, D.; Jovanovic Krivokuca, M. IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies. Int. J. Mol. Sci. 2022, 23, 14574. [Google Scholar] [CrossRef]
- Perrier d’Hauterive, S.; Charlet-Renard, C.; Berndt, S.; Dubois, M.; Munaut, C.; Goffin, F.; Hagelstein, M.T.; Noel, A.; Hazout, A.; Foidart, J.M.; et al. Human chorionic gonadotropin and growth factors at the embryonic-endometrial interface control leukemia inhibitory factor (LIF) and interleukin 6 (IL-6) secretion by human endometrial epithelium. Hum. Reprod. 2004, 19, 2633–2643. [Google Scholar] [CrossRef]
- Jones, S.A.; Jenkins, B.J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 2018, 18, 773–789. [Google Scholar] [CrossRef]
- Matsushima, K.; Yang, D.; Oppenheim, J.J. Interleukin-8: An evolving chemokine. Cytokine 2022, 153, 155828. [Google Scholar] [CrossRef] [PubMed]
- Corre, I.; Pineau, D.; Hermouet, S. Interleukin-8: An autocrine/paracrine growth factor for human hematopoietic progenitors acting in synergy with colony stimulating factor-1 to promote monocyte-macrophage growth and differentiation. Exp. Hematol. 1999, 27, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Dubey, S.; Varney, M.L.; Dave, B.J.; Singh, R.K. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 2003, 170, 3369–3376. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Campo, P.; Dominguez, F.; Coloma, J.; Meseguer, M.; Remohi, J.; Pellicer, A.; Simon, C. Hormonal and embryonic regulation of chemokines IL-8, MCP-1 and RANTES in the human endometrium during the window of implantation. Mol. Hum. Reprod. 2002, 8, 375–384. [Google Scholar] [CrossRef]
- Dominguez, F.; Galan, A.; Martin, J.J.; Remohi, J.; Pellicer, A.; Simon, C. Hormonal and embryonic regulation of chemokine receptors CXCR1, CXCR4, CCR5 and CCR2B in the human endometrium and the human blastocyst. Mol. Hum. Reprod. 2003, 9, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Tsui, K.H.; Chen, L.Y.; Shieh, M.L.; Chang, S.P.; Yuan, C.C.; Li, H.Y. Interleukin-8 can stimulate progesterone secretion from a human trophoblast cell line, BeWo. In Vitro Cell. Dev. Biol. Anim. 2004, 40, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Pitman, H.; Innes, B.A.; Robson, S.C.; Bulmer, J.N.; Lash, G.E. Altered expression of interleukin-6, interleukin-8 and their receptors in decidua of women with sporadic miscarriage. Hum. Reprod. 2013, 28, 2075–2086. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, L.; Chen, J.; Lu, Y.; Cao, C.; Lv, S.; Wei, Z.; Wang, L.; Chen, J.; Hu, X.; et al. The Immune Atlas of Human Deciduas with Unexplained Recurrent Pregnancy Loss. Front. Immunol. 2021, 12, 689019. [Google Scholar] [CrossRef]
- Zhao, L.; Han, L.; Hei, G.; Wei, R.; Zhang, Z.; Zhu, X.; Guo, Q.; Chu, C.; Fu, X.; Xu, K.; et al. Diminished miR-374c-5p negatively regulates IL (interleukin)-6 in unexplained recurrent spontaneous abortion. J. Mol. Med. 2022, 100, 1043–1056. [Google Scholar] [CrossRef]
- Laisk, T.; Soares, A.L.G.; Ferreira, T.; Painter, J.N.; Censin, J.C.; Laber, S.; Bacelis, J.; Chen, C.Y.; Lepamets, M.; Lin, K.; et al. The genetic architecture of sporadic and multiple consecutive miscarriage. Nat. Commun. 2020, 11, 5980. [Google Scholar] [CrossRef]
- Liang, P.Y.; Diao, L.H.; Huang, C.Y.; Lian, R.C.; Chen, X.; Li, G.G.; Zhao, J.; Li, Y.Y.; He, X.B.; Zeng, Y. The pro-inflammatory and anti-inflammatory cytokine profile in peripheral blood of women with recurrent implantation failure. Reprod. Biomed. Online 2015, 31, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Yan, L.; Cheng, Z.; Qiang, L.; Yan, J.; Liu, Y.; Liang, R.; Zhang, J.; Li, Z.; Zhuang, L.; et al. Potential effect of inflammation on the failure risk of in vitro fertilization and embryo transfer among infertile women. Hum. Fertil. 2020, 23, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Ozgu-Erdinc, A.S.; Gozukara, I.; Kahyaoglu, S.; Yilmaz, S.; Yumusak, O.H.; Yilmaz, N.; Erkaya, S.; Engin-Ustun, Y. Is there any role of interleukin-6 and high sensitive C-reactive protein in predicting IVF/ICSI success? A prospective cohort study. Horm. Mol. Biol. Clin. Investig. 2021, 43, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.G.; Chen, J.R.; Hernandez, L.; Alvord, W.G.; Stewart, C.L. Dual control of LIF expression and LIF receptor function regulate Stat3 activation at the onset of uterine receptivity and embryo implantation. Proc. Natl. Acad. Sci. USA 2001, 98, 8680–8685. [Google Scholar] [CrossRef] [PubMed]
- Catalano, R.D.; Johnson, M.H.; Campbell, E.A.; Charnock-Jones, D.S.; Smith, S.K.; Sharkey, A.M. Inhibition of Stat3 activation in the endometrium prevents implantation: A nonsteroidal approach to contraception. Proc. Natl. Acad. Sci. USA 2005, 102, 8585–8590. [Google Scholar] [CrossRef] [PubMed]
- Nicola, N.A.; Babon, J.J. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 2015, 26, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Charnock-Jones, D.S.; Sharkey, A.M.; Fenwick, P.; Smith, S.K. Leukaemia inhibitory factor mRNA concentration peaks in human endometrium at the time of implantation and the blastocyst contains mRNA for the receptor at this time. J. Reprod. Fertil. 1994, 101, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.R.; Cheng, J.G.; Shatzer, T.; Sewell, L.; Hernandez, L.; Stewart, C.L. Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology 2000, 141, 4365–4372. [Google Scholar] [CrossRef]
- Licht, P.; Losch, A.; Dittrich, R.; Neuwinger, J.; Siebzehnrubl, E.; Wildt, L. Novel insights into human endometrial paracrinology and embryo-maternal communication by intrauterine microdialysis. Hum. Reprod. Update 1998, 4, 532–538. [Google Scholar] [CrossRef]
- Gutsche, S.; von Wolff, M.; Strowitzki, T.; Thaler, C.J. Seminal plasma induces mRNA expression of IL-1beta, IL-6 and LIF in endometrial epithelial cells in vitro. Mol. Hum. Reprod. 2003, 9, 785–791. [Google Scholar] [CrossRef]
- Yue, X.; Wu, L.; Hu, W. The regulation of leukemia inhibitory factor. Cancer Cell Microenviron. 2015, 2, 877. [Google Scholar] [CrossRef]
- Karaer, A.; Cigremis, Y.; Celik, E.; Urhan Gonullu, R. Prokineticin 1 and leukemia inhibitory factor mRNA expression in the endometrium of women with idiopathic recurrent pregnancy loss. Fertil. Steril. 2014, 102, 1091–1095.e1. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Sun, X.; Li, L.; Wu, L.; Zhang, A.; Feng, Y. Pinopodes, leukemia inhibitory factor, integrin-beta3, and mucin-1 expression in the peri-implantation endometrium of women with unexplained recurrent pregnancy loss. Fertil. Steril. 2012, 98, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Miresmaeili, S.M.; Fesahat, F.; Kazemi, N.; Ansariniya, H.; Zare, F. Possible Role of Leukemia Inhibitory Factor and Inflammatory Cytokines in The Recurrent Spontaneous Abortion: A Case-Control Study. Int. J. Fertil. Steril. 2023, 17, 140–144. [Google Scholar] [PubMed]
- Hambartsoumian, E. Endometrial leukemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation. Am. J. Reprod. Immunol. 1998, 39, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Yin, Y.; Zhao, M.; Hu, L.; Chen, Q. The low expression of leukemia inhibitory factor in endometrium: Possible relevant to unexplained infertility with multiple implantation failures. Cytokine 2013, 62, 334–339. [Google Scholar] [CrossRef]
- Huang, C.; Sun, H.; Wang, Z.; Liu, Y.; Cheng, X.; Liu, J.; Jiang, R.; Zhang, X.; Zhen, X.; Zhou, J.; et al. Increased Kruppel-like factor 12 impairs embryo attachment via downregulation of leukemia inhibitory factor in women with recurrent implantation failure. Cell Death Discov. 2018, 4, 23. [Google Scholar] [CrossRef]
- Pantos, K.; Grigoriadis, S.; Maziotis, E.; Pistola, K.; Xystra, P.; Pantou, A.; Kokkali, G.; Pappas, A.; Lambropoulou, M.; Sfakianoudis, K.; et al. The Role of Interleukins in Recurrent Implantation Failure: A Comprehensive Review of the Literature. Int. J. Mol. Sci. 2022, 23, 2198. [Google Scholar] [CrossRef]
- Dimitriadis, E.; White, C.A.; Jones, R.L.; Salamonsen, L.A. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum. Reprod. Update 2005, 11, 613–630. [Google Scholar] [CrossRef]
- Cork, B.A.; Tuckerman, E.M.; Li, T.C.; Laird, S.M. Expression of interleukin (IL)-11 receptor by the human endometrium in vivo and effects of IL-11, IL-6 and LIF on the production of MMP and cytokines by human endometrial cells in vitro. Mol. Hum. Reprod. 2002, 8, 841–848. [Google Scholar] [CrossRef]
- van Mourik, M.S.; Macklon, N.S.; Heijnen, C.J. Embryonic implantation: Cytokines, adhesion molecules, and immune cells in establishing an implantation environment. J. Leukoc. Biol. 2009, 85, 4–19. [Google Scholar] [CrossRef] [PubMed]
- von Rango, U.; Alfer, J.; Kertschanska, S.; Kemp, B.; Muller-Newen, G.; Heinrich, P.C.; Beier, H.M.; Classen-Linke, I. Interleukin-11 expression: Its significance in eutopic and ectopic human implantation. Mol. Hum. Reprod. 2004, 10, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Devi, Y.S.; Bowen-Shauver, J.; Ferguson-Gottschall, S.; Robb, L.; Gibori, G. The role of interleukin-11 in pregnancy involves up-regulation of alpha2-macroglobulin gene through janus kinase 2-signal transducer and activator of transcription 3 pathway in the decidua. Mol. Endocrinol. 2006, 20, 3240–3250. [Google Scholar] [CrossRef] [PubMed]
- Linjawi, S.; Li, T.C.; Tuckerman, E.M.; Blakemore, A.I.; Laird, S.M. Expression of interleukin-11 receptor alpha and interleukin-11 protein in the endometrium of normal fertile women and women with recurrent miscarriage. J. Reprod. Immunol. 2004, 64, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Karpovich, N.; Klemmt, P.; Hwang, J.H.; McVeigh, J.E.; Heath, J.K.; Barlow, D.H.; Mardon, H.J. The production of interleukin-11 and decidualization are compromised in endometrial stromal cells derived from patients with infertility. J. Clin. Endocrinol. Metab. 2005, 90, 1607–1612. [Google Scholar] [CrossRef]
- Sabry, D.; Nouh, O.; Marzouk, S.; Hassouna, A. Pilot study on molecular quantitation and sequencing of endometrial cytokines gene expression and their effect on the outcome of in vitro fertilization (IVF) cycle. J. Adv. Res. 2014, 5, 595–600. [Google Scholar] [CrossRef]
- Equils, O.; Kellogg, C.; McGregor, J.; Gravett, M.; Neal-Perry, G.; Gabay, C. The role of the IL-1 system in pregnancy and the use of IL-1 system markers to identify women at risk for pregnancy complicationsdagger. Biol. Reprod. 2020, 103, 684–694. [Google Scholar] [CrossRef]
- Hannum, C.H.; Wilcox, C.J.; Arend, W.P.; Joslin, F.G.; Dripps, D.J.; Heimdal, P.L.; Armes, L.G.; Sommer, A.; Eisenberg, S.P.; Thompson, R.C. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature 1990, 343, 336–340. [Google Scholar] [CrossRef]
- Gabay, C.; Lamacchia, C.; Palmer, G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol. 2010, 6, 232–241. [Google Scholar] [CrossRef]
- Young, A.; Thomson, A.J.; Ledingham, M.; Jordan, F.; Greer, I.A.; Norman, J.E. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol. Reprod. 2002, 66, 445–449. [Google Scholar] [CrossRef]
- Romero, R.; Gomez, R.; Galasso, M.; Mazor, M.; Berry, S.M.; Quintero, R.A.; Cotton, D.B. The natural interleukin-1 receptor antagonist in the fetal, maternal, and amniotic fluid compartments: The effect of gestational age, fetal gender, and intrauterine infection. Am. J. Obstet. Gynecol. 1994, 171, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tian, Y.; Zheng, L.; Luu, T.; Kwak-Kim, J. The Update Immune-Regulatory Role of Pro- and Anti-Inflammatory Cytokines in Recurrent Pregnancy Losses. Int. J. Mol. Sci. 2022, 24, 132. [Google Scholar] [CrossRef] [PubMed]
- Raghupathy, R.; Makhseed, M.; Azizieh, F.; Hassan, N.; Al-Azemi, M.; Al-Shamali, E. Maternal Th1- and Th2-type reactivity to placental antigens in normal human pregnancy and unexplained recurrent spontaneous abortions. Cell. Immunol. 1999, 196, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Rutherford, A.; Meister, W.; Weiss, A.; Rollinghoff, M.; Lohoff, M. TCR- and IL-1-mediated co-stimulation reveals an IL-4-independent way of Th2 cell proliferation. Int. Immunol. 1996, 8, 1257–1263. [Google Scholar] [CrossRef]
- von Wolff, M.; Thaler, C.J.; Strowitzki, T.; Broome, J.; Stolz, W.; Tabibzadeh, S. Regulated expression of cytokines in human endometrium throughout the menstrual cycle: Dysregulation in habitual abortion. Mol. Hum. Reprod. 2000, 6, 627–634. [Google Scholar] [CrossRef]
- Lob, S.; Amann, N.; Kuhn, C.; Schmoeckel, E.; Wockel, A.; Zati Zehni, A.; Kaltofen, T.; Keckstein, S.; Mumm, J.N.; Meister, S.; et al. Interleukin-1 beta is significantly upregulated in the decidua of spontaneous and recurrent miscarriage placentas. J. Reprod. Immunol. 2021, 144, 103283. [Google Scholar] [CrossRef]
- Petri, M. Antiphospholipid syndrome. Transl. Res. J. Lab. Clin. Med. 2020, 225, 70–81. [Google Scholar] [CrossRef]
- Mulla, M.J.; Salmon, J.E.; Chamley, L.W.; Brosens, J.J.; Boeras, C.M.; Kavathas, P.B.; Abrahams, V.M. A role for uric acid and the Nalp3 inflammasome in antiphospholipid antibody-induced IL-1beta production by human first trimester trophoblast. PLoS ONE 2013, 8, e65237. [Google Scholar] [CrossRef]
- Kreines, F.M.; Nasioudis, D.; Minis, E.; Irani, M.; Witkin, S.S.; Spandorfer, S. IL-1beta predicts IVF outcome: A prospective study. J. Assist. Reprod. Genet. 2018, 35, 2031–2035. [Google Scholar] [CrossRef]
- Boomsma, C.M.; Kavelaars, A.; Eijkemans, M.J.; Lentjes, E.G.; Fauser, B.C.; Heijnen, C.J.; Macklon, N.S. Endometrial secretion analysis identifies a cytokine profile predictive of pregnancy in IVF. Hum. Reprod. 2009, 24, 1427–1435. [Google Scholar] [CrossRef]
- Inagaki, N.; Stern, C.; McBain, J.; Lopata, A.; Kornman, L.; Wilkinson, D. Analysis of intra-uterine cytokine concentration and matrix-metalloproteinase activity in women with recurrent failed embryo transfer. Hum. Reprod. 2003, 18, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Quenby, S.; Vince, G.; Farquharson, R.; Aplin, J. Recurrent miscarriage: A defect in nature’s quality control? Hum. Reprod. 2002, 17, 1959–1963. [Google Scholar] [CrossRef] [PubMed]
- Uchida, H.; Maruyama, T.; Nishikawa-Uchida, S.; Miyazaki, K.; Masuda, H.; Yoshimura, Y. Glycodelin in reproduction. Reprod. Med. Biol. 2013, 12, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Dixit, A.; Karande, A.A. Glycodelin regulates the numbers and function of peripheral natural killer cells. J. Reprod. Immunol. 2020, 137, 102625. [Google Scholar] [CrossRef] [PubMed]
- Toth, B.; Roth, K.; Kunert-Keil, C.; Scholz, C.; Schulze, S.; Mylonas, I.; Friese, K.; Jeschke, U. Glycodelin protein and mRNA is downregulated in human first trimester abortion and partially upregulated in mole pregnancy. J. Histochem. Cytochem. Off. J. Histochem. Soc. 2008, 56, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Lob, S.; Vattai, A.; Kuhn, C.; Schmoeckel, E.; Mahner, S.; Wockel, A.; Kolben, T.; Keil, C.; Jeschke, U.; Vilsmaier, T. Pregnancy Zone Protein (PZP) is significantly upregulated in the decidua of recurrent and spontaneous miscarriage and negatively correlated to Glycodelin A (GdA). J. Reprod. Immunol. 2021, 143, 103267. [Google Scholar] [CrossRef] [PubMed]
- Bastu, E.; Mutlu, M.F.; Yasa, C.; Dural, O.; Nehir Aytan, A.; Celik, C.; Buyru, F.; Yeh, J. Role of Mucin 1 and Glycodelin A in recurrent implantation failure. Fertil. Steril. 2015, 103, 1059–1064. [Google Scholar] [CrossRef]
- Skrzypczak, J.; Wirstlein, P.; Mikolajczyk, M. Is glycodelin an important marker of endometrial receptivity? Ginekol. Pol. 2005, 76, 770–781. [Google Scholar]
- Tu, Z.; Ran, H.; Zhang, S.; Xia, G.; Wang, B.; Wang, H. Molecular determinants of uterine receptivity. Int. J. Dev. Biol. 2014, 58, 147–154. [Google Scholar] [CrossRef]
- Gotestam Skorpen, C.; Hoeltzenbein, M.; Tincani, A.; Fischer-Betz, R.; Elefant, E.; Chambers, C.; da Silva, J.; Nelson-Piercy, C.; Cetin, I.; Costedoat-Chalumeau, N.; et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann. Rheum. Dis. 2016, 75, 795–810. [Google Scholar] [CrossRef]
- Gunther, V.; Otte, S.V.; Freytag, D.; Maass, N.; Alkatout, I. Recurrent implantation failure—An overview of current research. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2021, 37, 584–590. [Google Scholar] [CrossRef] [PubMed]
Genetic factors | Chromosomal aberrations |
De novo chromosomal abnormalities of the embryo or certain gene polymorphisms | |
Anatomical factors | Uterine malformation |
Adhesions | |
Polyp | |
Submucosal fibroid | |
Microbiological factors | Bacterial vaginosis |
Chronic endometritis | Factor V Leiden mutation |
Antithrombin deficiency | |
Prothrombin mutation | |
Protein C deficiency | |
Protein S deficiency | |
Thrombophilia | Antiphospholipid syndrome |
Endocrine disorders | Hyperthyroidism |
Hypothyroidism | |
Diabetes mellitus | |
Hyperandrogenemia | |
Hyperprolactinemia | |
PCOS | |
Luteal phase defects | |
Immunological causes | Cytokine levels |
Natural killer cells (uterine and peripheral) | |
T-helper cell type 1/type 2 quotient | |
KIR receptors | |
HLA antibodies | |
Lifestyle | Overweight |
Underweight | |
Increased stress | |
Alcohol consumption | |
Nicotine consumption | |
Idiopathic |
Pro-inflammatory cytokines | IFN-γ |
IL-2 | |
TNF-α | |
IL-1β | |
IL-6 | |
IL-8 | |
IL-17 | |
IL-12 | |
Anti-inflammatory cytokines | IL-4 |
IL-5 | |
IL-9 | |
IL-10 | |
IL-11 | |
IL-13 | |
TGF-β1 | |
LIF |
Hormone/Cytokine/Glycoprotein | Normal Pregnancy | RPL | RIF |
---|---|---|---|
Estrogen | Proliferation of endometrium, ERα: essential for implantation, ERβ: no restriction of fertility | Estrogen ↓ [17,19] | Estrogen ↓ [23,24] Estrogen ↑ → premature progesterone influence [23] |
Progesterone | Inducing decidualization, opening the WOI PR-A (PR-B knock-out): implantation, pregnancy, parturation PR-B (PR-A knock-out): endometrial hyperplasia, inflammation, absence of decidualization | Progesterone ↓ [19] | Estrogen ↑ → premature progesterone influence, asynchronicity between endometrium and embryo [23] |
IL-6 | Luteal phase: high concentration, regulation of trophoblast invasion and spiral artery remodeling | Sporadic abortion: IL-6 ↓ [37] RPL: IL-6 ↑ [39] | IL-6 ↑ [41] IL-6 = [43] IL-6 = [42] |
IL-8 | Luteal phase and during embryo presentation: high concentration; stimulates progesterone secretion | Sporadic abortion: IL-8 ↓ [37] RPL: IL-8 ↑ [39] | IL-8 ↑ [42] |
LIF | Receptivity of endometrium, decidualization, maintaining pinopodes, embryo attachment, implantation, placenta development | LIF ↑ (endometrial samples) [52] LIF = (endometrial samples) [53] LIF ↓ (serum) [54] | LIF ↓ (secretory phase), high amplitude (proliferative phase) [55] LIF ↓ (proliferative phase) [56] KLF12 ↑ → LIF ↓ [57] |
IL-11 | Produced by stromal and epithelial cells, during early secretory phase (epithelial cells), during decidualization (stromal cells), TNF-α ↓ | IL-11 (epithelial cells) ↓ [64] | IL-11 (stromal cells) ↓ [65] IL-11 = [66] |
IL-1 | IL-1β and IL-1Ra are responsible for the embryo–maternal dialog and the immunological shift. The tissue of the fallopian tubes and the myometrial smooth muscle synthesize IL-1β during pregnancy, IL-1β ↑ during pregnancy, responsible for prothrombotic state | IL-1β ↓ [67,75] IL-1β ↑ [76] IL-1β ↑ and antiphospholipid syndrome [78] | IL-1β= no increase in contrast to healthy pregnancies, IL1-Ra = [79], IL-1 β ↑ [41,80,81] |
Glycodelin | Glycodelin-A: shifting the immune system, endometrial proliferation, fertilization and implantation | Glycodelin-A ↓ [85,86] | Glycodelin-A ↓ [87,88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Günther, V.; Allahqoli, L.; Deenadayal-Mettler, A.; Maass, N.; Mettler, L.; Gitas, G.; Andresen, K.; Schubert, M.; Ackermann, J.; von Otte, S.; et al. Molecular Determinants of Uterine Receptivity: Comparison of Successful Implantation, Recurrent Miscarriage, and Recurrent Implantation Failure. Int. J. Mol. Sci. 2023, 24, 17616. https://doi.org/10.3390/ijms242417616
Günther V, Allahqoli L, Deenadayal-Mettler A, Maass N, Mettler L, Gitas G, Andresen K, Schubert M, Ackermann J, von Otte S, et al. Molecular Determinants of Uterine Receptivity: Comparison of Successful Implantation, Recurrent Miscarriage, and Recurrent Implantation Failure. International Journal of Molecular Sciences. 2023; 24(24):17616. https://doi.org/10.3390/ijms242417616
Chicago/Turabian StyleGünther, Veronika, Leila Allahqoli, Anupama Deenadayal-Mettler, Nicolai Maass, Liselotte Mettler, Georgios Gitas, Kristin Andresen, Melanie Schubert, Johannes Ackermann, Sören von Otte, and et al. 2023. "Molecular Determinants of Uterine Receptivity: Comparison of Successful Implantation, Recurrent Miscarriage, and Recurrent Implantation Failure" International Journal of Molecular Sciences 24, no. 24: 17616. https://doi.org/10.3390/ijms242417616
APA StyleGünther, V., Allahqoli, L., Deenadayal-Mettler, A., Maass, N., Mettler, L., Gitas, G., Andresen, K., Schubert, M., Ackermann, J., von Otte, S., & Alkatout, I. (2023). Molecular Determinants of Uterine Receptivity: Comparison of Successful Implantation, Recurrent Miscarriage, and Recurrent Implantation Failure. International Journal of Molecular Sciences, 24(24), 17616. https://doi.org/10.3390/ijms242417616