The Mechanism of Osteoprotegerin-Induced Osteoclast Pyroptosis In Vitro
Abstract
:1. Introduction
2. Results
2.1. Effect of OPG on Survival Rate and Cell Membrane Integrity of Osteoclasts
2.2. Effects of OPG on Death Rate and the Release of Inflammatory Factors of Osteoclasts
2.3. Effect of OPG on Transcription Levels of Pyroptosis Pathway-Related Genes of Osteoclasts
2.4. Effects of OPG on Expression Levels of Pyroptosis Pathway-Related Proteins of Osteoclasts
3. Discussion
4. Materials and Methods
4.1. Experimental Animals
4.2. Reagents
4.3. Cell Culture
4.4. LDH, IL-18, and IL-1β Assay
4.5. Cellular Viability
4.6. Scanning Electron Microscope (SEM)
4.7. Flow Cytometry Enumeration
4.8. TRAP Staining
4.9. Western Blot
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nijweide, P.J.; Burger, E.H.; Feyen, J.H. Cells of bone: Proliferation, differentiation, and hormonal regulation. Physiological Reviews 1986, 4, 855–886. [Google Scholar] [CrossRef]
- Mostov, K.; Werb, Z. Journey across the osteoclast. Science 1997, 276, 219–220. [Google Scholar] [CrossRef]
- Bucay, N.; Sarosi, I.; Dunstan, C.; Morony, S.; Tarpley, J.; Capparelli, C.; Scully, S.; Tan, H.L.; Xu, W.; Lacey, D.L.; et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998, 12, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, A.; Amizuka, N.; Irie, K.; Murakami, A.; Fujise, N.; Kanno, T.; Sato, Y.; Nakagawa, N.; Yasuda, H.; Mochizuki, S.; et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun. 1998, 247, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ran, D.; Zhao, H.; Shi, X.; Song, R.; Zou, H.; Liu, Z. The effect of P2X7R- mediated Ca and MAPK signaling in OPG-induced duck embryo osteoclasts differentiation and adhesive structure damage. Life Sci. 2022, 293, 120337. [Google Scholar] [CrossRef] [PubMed]
- Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.S.; Luthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997, 89, 309–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Xu, C.; Zhao, H.; Xia, P.; Song, R.; Gu, J.; Liu, X.; Bian, J.; Yuan, Y.; Liu, Z. Osteoprotegerin Induces Apoptosis of Osteoclasts and Osteoclast Precursor Cells via the Fas/Fas Ligand Pathway. PLoS ONE 2015, 10, 142519. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, A.M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 1986, 261, 7123–7126. [Google Scholar] [CrossRef] [PubMed]
- Narasimhulu, C.A.; Singla, D.K. Amelioration of diabetes-induced inflammation mediated pyroptosis, sarcopenia, and adverse muscle remodelling by bone morphogenetic protein-7. J. Cachexia 2021, 12, 403–420. [Google Scholar] [CrossRef]
- Teng, J.-F.; Mei, Q.-B.; Zhou, X.-G.; Tang, Y.; Xiong, R.; Qiu, W.-Q.; Pan, R.; Law, B.Y.-K.; Wong, V.K.-W.; Yu, C.-L.; et al. Polyphyllin VI Induces Caspase-1-Mediated Pyroptosis via the Induction of ROS/NF-κB/NLRP3/GSDMD Signal Axis in Non-Small Cell Lung Cancer. Cancers 2020, 12, 193. [Google Scholar] [CrossRef]
- Wu, X.-Y.; Li, K.-T.; Yang, H.-X.; Yang, B.; Lu, X.; Zhao, L.-D.; Fei, Y.-Y.; Chen, H.; Wang, L.; Li, J.; et al. Complement C1q synergizes with PTX3 in promoting NLRP3 inflammasome over-activation and pyroptosis in rheumatoid arthritis. J. Autoimmun. 2020, 106, 102336. [Google Scholar] [CrossRef]
- Rodan, G.A.; Martin, T.J. Role of osteoblasts in hormonal control of bone resorption-a hypothesis. Calcif. Tissue Int. 1981, 33, 349–351. [Google Scholar] [CrossRef]
- Rodan, G.A.; Martin, T.J. Therapeutic approaches to bone diseases. Science 2000, 289, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Shi, X.; Zhao, H.; Song, R.; Zou, H.; Zhu, J.; Liu, Z. Potential mechanisms of osteoprotegerin-induced damage to osteoclast adhesion structures via P2X7R-mediated MAPK signaling. Int. J. Mol. Med. 2022, 49, 5115. [Google Scholar] [CrossRef]
- Fu, Y.-X.; Gu, J.-H.; Zhang, Y.-R.; Tong, X.-S.; Zhao, H.-Y.; Yuan, Y.; Liu, X.-Z.; Bian, J.-C.; Liu, Z.-P. Influence of osteoprotegerin on differentiation, activation, and apoptosis of Gaoyou duck embryo osteoclasts in vitro. Poult. Sci. 2013, 92, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.N.; Sun, Z.J.; Zhang, L. Pyroptosis in inflammatory bone diseases: Molecular insights and targeting strategies. FASEB J. 2022, 36, 22670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, X.; Gueydan, C.; Han, J. Plasma membrane changes during programmed cell deaths. Cell Res. 2018, 28, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayagaki, N.; Stowe, I.B.; Lee, B.L.; O’Rourke, K.; Anderson, K.; Warming, S.; Cuellar, T.; Haley, B.; Roose-Girma, M.; Phung, Q.T.; et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015, 526, 666–671. [Google Scholar] [CrossRef]
- He, W.; Wan, H.; Hu, L.; Wang, X.; Han, J. Gasdermin D is an executor of pyroptosis and required for interleukin-lp secretion. Cell Res. 2015, 25, 1285–1298. [Google Scholar] [CrossRef]
- Bergsbaken, T.; Fink, L.; Cookson, T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Ruan, J.; Pan, Y.; Magupalli, V.G.; Wu, H.; Lieberman, J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016, 535, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, H.C.; Snyder, S.H. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Med. Sci. 1999, 96, 13978–13982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sollberger, G.; Strittmatter, G.E.; Garstkiewicz, M.; Sand, J.; Beer, H.D. Caspase-1: The inflammasome and beyond. Innate Immun. 2014, 20, 115–125. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Ma, Y.; Wang, J.; Wang, Y.; Ali, W.; Zou, H.; Zhao, H.; Tong, X.; Song, R.; Liu, Z. The Mechanism of Osteoprotegerin-Induced Osteoclast Pyroptosis In Vitro. Int. J. Mol. Sci. 2023, 24, 1518. https://doi.org/10.3390/ijms24021518
Zhu J, Ma Y, Wang J, Wang Y, Ali W, Zou H, Zhao H, Tong X, Song R, Liu Z. The Mechanism of Osteoprotegerin-Induced Osteoclast Pyroptosis In Vitro. International Journal of Molecular Sciences. 2023; 24(2):1518. https://doi.org/10.3390/ijms24021518
Chicago/Turabian StyleZhu, Jiaqiao, Yonggang Ma, Jie Wang, Yangyang Wang, Waseem Ali, Hui Zou, Hongyan Zhao, Xishuai Tong, Ruilong Song, and Zongping Liu. 2023. "The Mechanism of Osteoprotegerin-Induced Osteoclast Pyroptosis In Vitro" International Journal of Molecular Sciences 24, no. 2: 1518. https://doi.org/10.3390/ijms24021518