Biochemical and Anthropometric Parameters for the Early Recognition of the Intrauterine Growth Restriction and Preterm Neonates at Risk of Impaired Neurodevelopment
Abstract
:1. Introduction
2. Results
2.1. Variables Assessed at 30–40 Days of the Postnatal Period and Related Correlation Studies in the Whole Population
2.2. Variables Assessed at 30–40 Days of the Postnatal Period in Full-Term, Preterm, IUGR, and Preterm-IUGR Subjects
2.3. S100B, Tau, NGF, and Regional Brain Volumes in the Normal and Abnormal Neurodevelopment Subgroups
2.4. Diagnostic Accuracy in Determining the Negative Outcome at Two Years
3. Discussion
4. Materials and Methods
4.1. Neonate Population
4.2. Urine Collection
4.3. S100B, Tau, and NGF Assays
4.4. 3D Echo-Measured Cerebral Volumes
4.5. Neurodevelopmental Assessment at 2 Years of Age
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aisa, M.C.; Barbati, A.; Cappuccini, B.; Clerici, G.; Gerli, S.; Borisova, A.; De Rosa, F.; Kaptilnyy, V.A.; Ishenko, A.I.; Renzo, G.C.D. 3-D Echo Brain Volumes to Predict Neurodevelopmental Outcome in Infants: A Prospective Observational Follow-up Study. Ultrasound Med. Biol. 2021, 47, 2220–2232. [Google Scholar] [CrossRef]
- Aisa, M.C.; Barbati, A.; Gerli, S.; Clerici, G.; Nikolova, N.; Giardina, I.; Babucci, G.; De Rosa, F.; Cappuccini, B. Brain 3D-echographic early predictors of neuro-behavioral disorders in infants: A prospective observational study. J. Matern. Fetal Neonatal Med. 2022, 35, 642–650. [Google Scholar] [CrossRef]
- Aisa, M.C.; Barbati, A.; Cappuccini, B.; De Rosa, F.; Gerli, S.; Clerici, G.; Kaptilnyy, V.A.; Ishenko, A.I.; Di Renzo, G.C. Urinary Nerve Growth Factor in full-term, preterm and intra uterine growth restriction neonates: Association with brain growth at 30-40 days of postnatal period and with neuro-development outcome at two years. A pilot study. Neurosci. Lett. 2021, 741, 135459. [Google Scholar] [CrossRef]
- Spittle, A.; Orton, J.; Boyd, R. Early developmental intervention programs post hospital discharge to prevent motor and cognitive impairments in preterm infants. In The Cochrane Database of Systematic Reviews; The Cochrane Collaboration, Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2005; p. CD005495. [Google Scholar]
- McCormick, M.C.; Brooks-Gunn, J.; Buka, S.L.; Goldman, J.; Yu, J.; Salganik, M.; Scott, D.T.; Bennett, F.C.; Kay, L.L.; Bernbaum, J.C.; et al. Early Intervention in Low Birth Weight Premature Infants: Results at 18 Years of Age for the Infant Health and Development Program. Pediatrics 2006, 117, 771–780. [Google Scholar] [CrossRef] [Green Version]
- Bersani, I.; Pluchinotta, F.; Dotta, A.; Savarese, I.; Campi, F.; Auriti, C.; Chuklantseva, N.; Piersigilli, F.; Gazzolo, F.; Varrica, A.; et al. Early predictors of perinatal brain damage: The role of neurobiomarkers. Clin. Chem. Lab. Med. 2020, 58, 471–486. [Google Scholar] [CrossRef] [Green Version]
- Heizmann, C.W. Ca2+-binding S100 proteins in the central nervous system. Neurochem. Res. 1999, 24, 1097–1100. [Google Scholar] [CrossRef]
- Fanò, G.; Biocca, S.; Fulle, S.; Mariggiò, M.A.; Belia, S.; Calissano, P. The S-100: A protein family in search of a function. Prog. Neurobiol. 1995, 46, 71–82. [Google Scholar] [CrossRef]
- Haglid, K.G.; Yang, Q.; Hamberger, A.; Bergman, S.; Widerberg, A.; Danielsen, N. S-100beta stimulates neurite outgrowth in the rat sciatic nerve grafted with acellular muscle transplants. Brain Res. 1997, 753, 196–201. [Google Scholar] [CrossRef]
- Clementi, M.E.; Sampaolese, B.; Di Sante, G.; Ria, F.; Di Liddo, R.; Romano Spica, V.; Michetti, F. S100B Expression Plays a Crucial Role in Cytotoxicity, Reactive Oxygen Species Generation and Nitric Oxide Synthase Activation Induced by Amyloid β-Protein in an Astrocytoma Cell Line. Int. J. Mol. Sci. 2023, 24, 5213. [Google Scholar] [CrossRef]
- Michetti, F.; Corvino, V.; Geloso, M.C.; Lattanzi, W.; Bernardini, C.; Serpero, L.; Gazzolo, D. The S100B protein in biological fluids: More than a lifelong biomarker of brain distress. J. Neurochem. 2012, 120, 644–659. [Google Scholar] [CrossRef]
- Di Sante, G.; Amadio, S.; Sampaolese, B.; Clementi, M.E.; Valentini, M.; Volonté, C.; Casalbore, P.; Ria, F.; Michetti, F. The S100B Inhibitor Pentamidine Ameliorates Clinical Score and Neuropathology of Relapsing—Remitting Multiple Sclerosis Mouse Model. Cells 2020, 9, 748. [Google Scholar] [CrossRef] [Green Version]
- Kapural, M.; Krizanac-Bengez, L.; Barnett, G.; Perl, J.; Masaryk, T.; Apollo, D.; Rasmussen, P.; Mayberg, M.R.; Janigro, D. Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Res. 2002, 940, 102–104. [Google Scholar] [CrossRef]
- Jönsson, H.; Johnsson, P.; Höglund, P.; Alling, C.; Blomquist, S. Elimination of S100B and renal function after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2000, 14, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Michetti, F.; Di Sante, G.; Clementi, M.E.; Sampaolese, B.; Casalbore, P.; Volonté, C.; Romano Spica, V.; Parnigotto, P.P.; Di Liddo, R.; Amadio, S.; et al. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci. Biobehav. Rev. 2021, 127, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Gazzolo, D.; Florio, P.; Zullino, E.; Giovannini, L.; Scopesi, F.; Bellini, C.; Peri, V.; Mezzano, P.; Petraglia, F.; Michetti, F. S100B protein increases in human blood and urine during stressful activity. Clin. Chem. Lab. Med. 2010, 48, 1363–1365. [Google Scholar] [CrossRef] [PubMed]
- Rothermundt, M.; Ponath, G.; Arolt, V. S100B in schizophrenic psychosis. Int. Rev. Neurobiol. 2004, 59, 445–470. [Google Scholar] [CrossRef]
- Mackey, M.; Holleran, L.; Donohoe, G.; McKernan, D.P. Systematic Review and Meta-Analysis of Damage Associated Molecular Patterns HMGB1 and S100B in Schizophrenia. Psychiatry Investig. 2022, 19, 981–990. [Google Scholar] [CrossRef]
- Gazzolo, D.; Di Iorio, R.; Marinoni, E.; Masetti, P.; Serra, G.; Giovannini, L.; Michetti, F. S100B protein is increased in asphyxiated term infants developing intraventricular hemorrhage. Crit. Care Med. 2002, 30, 1356–1360. [Google Scholar] [CrossRef]
- Gazzolo, D.; Marinoni, E.; Di Iorio, R.; Bruschettini, M.; Kornacka, M.; Lituania, M.; Majewska, U.; Serra, G.; Michetti, F. Urinary S100B protein measurements: A tool for the early identification of hypoxic-ischemic encephalopathy in asphyxiated full-term infants. Crit. Care Med. 2004, 32, 131–136. [Google Scholar] [CrossRef]
- Gazzolo, D.; Bruschettini, M.; Lituania, M.; Serra, G.; Bonacci, W.; Michetti, F. Increased urinary S100B protein as an early indicator of intraventricular hemorrhage in preterm infants: Correlation with the grade of hemorrhage. Clin. Chem. 2001, 47, 1836–1838. [Google Scholar] [CrossRef]
- Perrone, S.; Grassi, F.; Caporilli, C.; Boscarino, G.; Carbone, G.; Petrolini, C.; Gambini, L.M.; Di Peri, A.; Moretti, S.; Buonocore, G.; et al. Brain Damage in Preterm and Full-Term Neonates: Serum Biomarkers for the Early Diagnosis and Intervention. Antioxidants 2023, 12, 309. [Google Scholar] [CrossRef] [PubMed]
- Zaigham, M.; Lundberg, F.; Olofsson, P. Protein S100B in umbilical cord blood as a potential biomarker of hypoxic-ischemic encephalopathy in asphyxiated newborns. Early Hum. Dev. 2017, 112, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Gazzolo, D.; Vinesi, P.; Marinoni, E.; Di Iorio, R.; Marras, M.; Lituania, M.; Bruschettini, P.; Michetti, F. S100B protein concentrations in cord blood: Correlations with gestational age in term and preterm deliveries. Clin. Chem. 2000, 46, 998–1000. [Google Scholar] [CrossRef] [PubMed]
- Gazzolo, D.; Bruschettini, M.; Lituania, M.; Serra, G.; Gandullia, E.; Michetti, F. S100b protein concentrations in urine are correlated with gestational age in healthy preterm and term newborns. Clin. Chem. 2001, 47, 1132–1133. [Google Scholar] [CrossRef]
- Florio, P.; Marinoni, E.; Di Iorio, R.; Bashir, M.; Ciotti, S.; Sacchi, R.; Bruschettini, M.; Lituania, M.; Serra, G.; Michetti, F.; et al. Urinary S100B protein concentrations are increased in intrauterine growth-retarded newborns. Pediatrics 2006, 118, e747–e754. [Google Scholar] [CrossRef]
- Gorath, M.; Stahnke, T.; Mronga, T.; Goldbaum, O.; Richter-Landsberg, C. Developmental changes of tau protein and mRNA in cultured rat brain oligodendrocytes. Glia 2001, 36, 89–101. [Google Scholar] [CrossRef]
- Cleveland, D.W.; Hwo, S.Y.; Kirschner, M.W. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J. Mol. Biol. 1977, 116, 207–225. [Google Scholar] [CrossRef]
- Guo, T.; Noble, W.; Hanger, D.P. Roles of tau protein in health and disease. Acta Neuropathol. 2017, 133, 665–704. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, A.; Hasegawa, M.; Suzuki, M.; Takio, K.; Morishima-Kawashima, M.; Titani, K.; Arai, T.; Kosik, K.S.; Ihara, Y. In vivo phosphorylation sites in fetal and adult rat tau. J. Biol. Chem. 1993, 268, 25712–25717. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, Z.; Zhang, L.; Wang, Y.; Zhang, Y.; Zhong, M.; Xu, S.; Chen, C.; Li, L.; Yu, Z. Tau protein is involved in morphological plasticity in hippocampal neurons in response to BDNF. Neurochem. Int. 2012, 60, 233–242. [Google Scholar] [CrossRef]
- Reiner, O.; Sapir, T. Polarity regulation in migrating neurons in the cortex. Mol. Neurobiol. 2009, 40, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dawson, H.N.; Ferreira, A.; Eyster, M.V.; Ghoshal, N.; Binder, L.I.; Vitek, M.P. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J. Cell Sci. 2001, 114, 1179–1187. [Google Scholar] [CrossRef]
- Pallas-Bazarra, N.; Jurado-Arjona, J.; Navarrete, M.; Esteban, J.A.; Hernández, F.; Ávila, J.; Llorens-Martín, M. Novel function of Tau in regulating the effects of external stimuli on adult hippocampal neurogenesis. EMBO J. 2016, 35, 1417–1436. [Google Scholar] [CrossRef]
- Sapir, T.; Frotscher, M.; Levy, T.; Mandelkow, E.-M.; Reiner, O. Tau’s role in the developing brain: Implications for intellectual disability. Hum. Mol. Genet. 2012, 21, 1681–1692. [Google Scholar] [CrossRef]
- Kamiya, A.; Kubo, K.; Tomoda, T.; Takaki, M.; Youn, R.; Ozeki, Y.; Sawamura, N.; Park, U.; Kudo, C.; Okawa, M.; et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat. Cell Biol. 2005, 7, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Chang, J.H.; Ge, S.; Faulkner, R.L.; Kim, J.Y.; Kitabatake, Y.; Liu, X.; Yang, C.-H.; Jordan, J.D.; Ma, D.K.; et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 2007, 130, 1146–1158. [Google Scholar] [CrossRef] [Green Version]
- Shimojima, K.; Sugiura, C.; Takahashi, H.; Ikegami, M.; Takahashi, Y.; Ohno, K.; Matsuo, M.; Saito, K.; Yamamoto, T. Genomic copy number variations at 17p13.3 and epileptogenesis. Epilepsy Res. 2010, 89, 303–309. [Google Scholar] [CrossRef]
- Gilman, S.R.; Iossifov, I.; Levy, D.; Ronemus, M.; Wigler, M.; Vitkup, D. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 2011, 70, 898–907. [Google Scholar] [CrossRef] [Green Version]
- Hernández, F.; Avila, J. Tauopathies. Cell. Mol. Life Sci. CMLS 2007, 64, 2219–2233. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, H.-L.; Min, L.-X.; Yuan, H.-S.; Guo, L.; Han, P.-B.; Lu, Y.-X.; Zhong, J.-F.; Wang, D.-L. Serum and cerebrospinal fluid tau protein level as biomarkers for evaluating acute spinal cord injury severity and motor function outcome. Neural Regen. Res. 2019, 14, 896. [Google Scholar] [CrossRef] [PubMed]
- Tanuma, N.; Miyata, R.; Kumada, S.; Kubota, M.; Takanashi, J.; Okumura, A.; Hamano, S.-I.; Hayashi, M. The axonal damage marker tau protein in the cerebrospinal fluid is increased in patients with acute encephalopathy with biphasic seizures and late reduced diffusion. Brain Dev. 2010, 32, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yang, S.; Du, Z.; Guo, Z. Dynamic changes of cerebral-specific proteins in full-term newborns with hypoxic-ischemic encephalopathy. Cell Biochem. Biophys. 2013, 66, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.-Y.; Wu, S.-J.; Gu, X.-L.; Wang, Q.-L.; Ren, P.-S.; Ma, Y.; Peng, L.-Y.; Jin, L.-H.; Li, L.-X. Predictive Value of Neurodevelopmental Outcome and Serum Tau Protein Level in Neonates with Hypoxic Ischemic Encephalopathy. Clin. Lab. 2017, 63, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.-Y.; Wang, Q.-L.; Chen, H.-Y.; You, Y.-J.; Ren, P.-S.; Li, L.-X. Study on serum Tau protein level and neurodevelopmental outcome of placental abruption with neonatal hypoxic-ischemic encephalopathy. J. Matern. Fetal Neonatal Med. 2020, 33, 3887–3893. [Google Scholar] [CrossRef] [PubMed]
- Leugers, C.J.; Lee, G. Tau potentiates nerve growth factor-induced mitogen-activated protein kinase signaling and neurite initiation without a requirement for microtubule binding. J. Biol. Chem. 2010, 285, 19125–19134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cragg, C.L.; Kalisch, B.E. Nerve Growth Factor Enhances Tau Isoform Expression and Transcription in IMR32 Cells. Neurosci. Med. 2014, 5, 119–130. [Google Scholar] [CrossRef]
- Okumus, N.; Turkyilmaz, C.; Onal, E.E.; Atalay, Y.; Serdaroglu, A.; Elbeg, S.; Koc, E.; Deda, G.; Cansu, A.; Gunduz, B. Tau and S100B proteins as biochemical markers of bilirubin-induced neurotoxicity in term neonates. Pediatr. Neurol. 2008, 39, 245–252. [Google Scholar] [CrossRef]
- Shiihara, T.; Miyake, T.; Izumi, S.; Watanabe, M.; Kamayachi, K.; Kodama, K.; Nabetani, M.; Ikemiyagi, M.; Yamaguchi, Y.; Sawaura, N. Serum and cerebrospinal fluid S100B, neuron-specific enolase, and total tau protein in acute encephalopathy with biphasic seizures and late reduced diffusion: A diagnostic validity. Pediatr. Int. 2012, 54, 52–55. [Google Scholar] [CrossRef]
- Ayaydın, H.; Kirmit, A.; Çelik, H.; Akaltun, İ.; Koyuncu, İ.; Ulgar, Ş.B. High Serum Levels of Serum 100 Beta Protein, Neuron-specific Enolase, Tau, Active Caspase-3, M30 and M65 in Children with Autism Spectrum Disorders. Clin. Psychopharmacol. Neurosci. 2020, 18, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Huttunen, H.J.; Kuja-Panula, J.; Sorci, G.; Agneletti, A.L.; Donato, R.; Rauvala, H. Coregulation of Neurite Outgrowth and Cell Survival by Amphoterin and S100 Proteins through Receptor for Advanced Glycation End Products (RAGE) Activation. J. Biol. Chem. 2000, 275, 40096–40105. [Google Scholar] [CrossRef] [Green Version]
- Arcuri, C.; Bianchi, R.; Brozzi, F.; Donato, R. S100B Increases Proliferation in PC12 Neuronal Cells and Reduces Their Responsiveness to Nerve Growth Factor via Akt Activation. J. Biol. Chem. 2005, 280, 4402–4414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerlach, R.; Demel, G.; König, H.-G.; Gross, U.; Prehn, J.H.M.; Raabe, A.; Seifert, V.; Kögel, D. Active secretion of S100B from astrocytes during metabolic stress. Neuroscience 2006, 141, 1697–1701. [Google Scholar] [CrossRef] [PubMed]
- Priante, E.; Verlato, G.; Giordano, G.; Stocchero, M.; Visentin, S.; Mardegan, V.; Baraldi, E. Intrauterine Growth Restriction: New Insight from the Metabolomic Approach. Metabolites 2019, 9, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, J.; Myint, A.M.; Schiltz, K.; Westphal, S.; Bernstein, H.-G.; Walter, M.; Schroeter, M.L.; Schwarz, M.J.; Bogerts, B. S100B Serum Levels in Schizophrenia Are Presumably Related to Visceral Obesity and Insulin Resistance. Cardiovasc. Psychiatry Neurol. 2010, 2010, e480707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blyth, B.J.; Farhavar, A.; Gee, C.; Hawthorn, B.; He, H.; Nayak, A.; Stöcklein, V.; Bazarian, J.J. Validation of Serum Markers for Blood-Brain Barrier Disruption in Traumatic Brain Injury. J. Neurotrauma 2009, 26, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Kleindienst, A.; Meissner, S.; Eyupoglu, I.Y.; Parsch, H.; Schmidt, C.; Buchfelder, M. Dynamics of S100B Release into Serum and Cerebrospinal Fluid Following Acute Brain Injury. In Proceedings of the Brain Edema XIV; Czernicki, Z., Baethmann, A., Ito, U., Katayama, Y., Kuroiwa, T., Mendelow, D., Eds.; Springer: Vienna, Austria, 2010; pp. 247–250. [Google Scholar]
- Gonçalves, C.-A.; Concli Leite, M.; Nardin, P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin. Biochem. 2008, 41, 755–763. [Google Scholar] [CrossRef]
- Gazzolo, D.; Bruschettini, M.; Lituania, M.; Serra, G.; Santini, P.; Michetti, F. Levels of S100B protein are higher in mature human milk than in colostrum and milk-formulae milks. Clin. Nutr. 2004, 23, 23–26. [Google Scholar] [CrossRef]
- Thompson, D.K.; Kelly, C.E.; Chen, J.; Beare, R.; Alexander, B.; Seal, M.L.; Lee, K.; Matthews, L.G.; Anderson, P.J.; Doyle, L.W.; et al. Early life predictors of brain development at term-equivalent age in infants born across the gestational age spectrum. NeuroImage 2019, 185, 813–824. [Google Scholar] [CrossRef]
- Hintz, S.R.; Kendrick, D.E.; Vohr, B.R.; Kenneth Poole, W.; Higgins, R.D. Nichd Neonatal Research Network Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants. Acta Paediatr. 2006, 95, 1239–1248. [Google Scholar] [CrossRef]
- Aisa, M.C.; Cappuccini, B.; Barbati, A.; Clerici, G.; Torlone, E.; Gerli, S.; Di Renzo, G.C. Renal Consequences of Gestational Diabetes Mellitus in Term Neonates: A Multidisciplinary Approach to the DOHaD Perspective in the Prevention and Early Recognition of Neonates of GDM Mothers at Risk of Hypertension and Chronic Renal Diseases in Later Life. J. Clin. Med. 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Camponeschi, C.; De Carluccio, M.; Amadio, S.; Clementi, M.E.; Sampaolese, B.; Volonté, C.; Tredicine, M.; Romano Spica, V.; Di Liddo, R.; Ria, F.; et al. S100B Protein as a Therapeutic Target in Multiple Sclerosis: The S100B Inhibitor Arundic Acid Protects from Chronic Experimental Autoimmune Encephalomyelitis. Int. J. Mol. Sci. 2021, 22, 13558. [Google Scholar] [CrossRef] [PubMed]
S100B | Tau | NGF | WBV | TV | FCV | CV | BW | |
---|---|---|---|---|---|---|---|---|
n | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
Median | 1.1 | 1.8 | 2 | 385 | 7 | 49.5 | 11.9 | 1905 |
IQR | 0.8–1.9 | 1.6–2.2 | 1.4–4.2 | 352–425 | 5.6–7.8 | 43–53.9 | 10–13 | 1650–2105 |
Mean ± SD | 1.4 ± 0.7 | 1.9 ± 0.5 | 2.8 ± 1.9 | 390 ± 45.7 | 6.8 ± 1.3 | 48.7 ± 7.3 | 11.7 ± 1.9 | 1900 ± 305 |
Tau | S100B | NGF | WBV | TV | FCV | CV | |
---|---|---|---|---|---|---|---|
Full-term | |||||||
n | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
Median | 2.2 | 0.82 | 5 | 450 | 8 | 56 | 13.1 |
IQR | 1.7–2.3 | 0.69–1.01 | 3.2–6.2 | 418–470 | 7.8–8.5 | 53–59 | 12.7–14.1 |
Mean ± SD | 2.2 ± 0.5 | 0.83 ± 0.19 | 5 ± 1.8 | 440 ± 32 | 8.13 ± 0.48 | 56 ± 3.5 | 13.5 ± 1 |
Preterm | |||||||
n | 17 | 17 | 17 | 17 | 17 | 17 | 17 |
Median | 1.7 * | 1.88 *** | 1.9 ** | 366 ** | 7.2 *** | 50 *** | 11.4 ** |
IQR | 1.6–1.8 | 1.2–2.17 | 1.3–4.85 | 358–420 | 5.3–7.8 | 42–52 | 10.1–12.85 |
Mean ± SD | 1.7 ± 0.13 | 1.7 ± 0.65 | 2.7 ± 1.8 | 383.5 ± 31 | 6.53 ± 1.2 | 47.5 ± 5 | 11.5 ± 1.3 |
IUGR | |||||||
n | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Median | 1.78 | 1.83 *** | 1.5 *** | 362 *** | 5.5 *** | 46 *** | 10.7 *** |
IQR | 1.6–2.23 | 1.49–2.15 | 1.3–2 | 352–380 | 5–6.9 | 42.2–48 | 10–11.9 |
Mean ± SD | 1.9 ± 0.5 | 1.77 ± 0.7 | 1.6 ± 0.43 | 364 ± 18 | 6 ± 0.8 | 45.5 ± 3.5 | 10.8 ± 1 |
Preterm-IUGR | |||||||
n | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
Median | 1.6 ** | 1.3 * | 1.36 *** | 340 *** | 6.1 *** | 44 *** | 10.5 *** |
IQR | 1.1–1.9 | 0.94–2.03 | 0.71–1.84 | 335.5–382.5 | 4.8–7 | 35.2–48.7 | 8.3–11 |
Mean ± SD | 1.6 ± 0.4 | 1.54 ± 0.7 | 1.4 ± 0.82 | 354.3 ± 25 | 5.6 ± 1.1 | 42.6 ± 7.5 | 10.2 ± 1.5 |
Predictor | ROC Curve AUC (95% CI) | Bivariate Logistic Regression OR (95% CI); p-Value |
---|---|---|
S100B | 0.845 | 1.24 (1.15–1.45); p < 0.001 |
Tau | 0.833 | 0.649 (0.497–0.847); p = 0.001 |
NGF | 0.958 | 0.664 (0.529–0.834); p < 0.001 |
WBV * | 0.969 | 0.875 (0.815–0.938); p < 0.001 |
TV * | 1.00 | <0.001; p < 0.001 |
FCV * | 0.980 | 0.447 (0.294–0.680); p < 0.001 |
CV * | 0.984 | 0.02 (0.01–0.27); p = 0.003 |
Multivariate Logistic Regression Models | ||
Predictors | ROC Curve AUC (95% CI) | |
S100B + Tau | 0.959 (0.899–1.0); p < 0.001 | |
NGF + Tau | 0.994 (0.983–1.0); p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aisa, M.C.; Cappuccini, B.; Favilli, A.; Datti, A.; Nardicchi, V.; Coata, G.; Gerli, S. Biochemical and Anthropometric Parameters for the Early Recognition of the Intrauterine Growth Restriction and Preterm Neonates at Risk of Impaired Neurodevelopment. Int. J. Mol. Sci. 2023, 24, 11549. https://doi.org/10.3390/ijms241411549
Aisa MC, Cappuccini B, Favilli A, Datti A, Nardicchi V, Coata G, Gerli S. Biochemical and Anthropometric Parameters for the Early Recognition of the Intrauterine Growth Restriction and Preterm Neonates at Risk of Impaired Neurodevelopment. International Journal of Molecular Sciences. 2023; 24(14):11549. https://doi.org/10.3390/ijms241411549
Chicago/Turabian StyleAisa, Maria Cristina, Benito Cappuccini, Alessandro Favilli, Alessandro Datti, Vincenza Nardicchi, Giuliana Coata, and Sandro Gerli. 2023. "Biochemical and Anthropometric Parameters for the Early Recognition of the Intrauterine Growth Restriction and Preterm Neonates at Risk of Impaired Neurodevelopment" International Journal of Molecular Sciences 24, no. 14: 11549. https://doi.org/10.3390/ijms241411549