QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals
Abstract
:1. Introduction
2. Major Abiotic Stresses Affecting Cereals
2.1. Drought and Heat Stress
2.2. Extreme Cold Stress
2.3. Flooding Stress
2.4. Salinity Stress
2.5. Heavy Metal Stress
3. Current Advances in Abiotic Stress Breeding of Cereals: QTL and Candidate Genes
3.1. Major Abiotic Stress-Related QTL and Candidate Genes in Rice
3.1.1. Drought and Heat Stress
3.1.2. Cold Stress
3.1.3. Submergence Stress
3.1.4. Salinity Stress
3.1.5. Metal Toxicity Stress
3.2. Major Abiotic Stress QTL and Candidate Genes in Maize
3.2.1. Drought Stress
3.2.2. Cold Stress
3.2.3. Submergence Stress
3.2.4. Salinity Stress
3.2.5. Heavy Metal Toxicity
3.3. Major Abiotic Stress QTL and Candidate Genes in Wheat
3.3.1. Drought and Heat Stress
3.3.2. Cold Stress
3.3.3. Submergence Stress
3.3.4. Salinity Stress
3.3.5. Metal Toxicity Stress
4. Application of QTL in Cereal Breeding
4.1. Stability of QTL across Diverse Backgrounds (Multi-Environment/Multi-Trait)
4.2. Linkage Mapping vs. Association Mapping
4.3. Conventional Cereal Breeding
4.4. Mutational Breeding
4.5. Marker-Assisted Selection (MAS)
5. Emerging Mapping and Technological Approaches in Cereal Breeding
5.1. Genome-Wide Association Study (GWAS)
5.2. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)
5.3. Meta-QTL Analysis for Stable QTL for Abiotic Stress Resistance
6. Conclusions
- Improving technological advances: Accessibility of annotated genome sequences, cheaper and more efficient molecular markers, enhanced genomic selection prediction models, and breeding efficiency tactics can help put us in a unique position to meet the challenges ahead for cereal production. Many previously inaccessible traits can now be studied with MAS thanks to the availability of high-density markers and cheaper genotyping methods.
- Emerging molecular biology technologies: Integrating modern plant breeding technologies into current traditional breeding methods in cereals to provide sustainable yields in challenging climatic circumstances and the regarding the prevalence of abiotic stressors.
- Introduction of new genes: Enhancement of desirable features by mutation breeding, speed breeding, and quick generation advancements since all of these precision breeding methods can help improve certain traits during the breeding cycle
7. Literature Review Methodology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 2017, 8, 537. [Google Scholar] [CrossRef] [Green Version]
- Seleiman, M.F.; Al-suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-wajid, H.H.; Battaglia, M.L. Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Bhuiyan, T.F.; Anee, T.I.; Inafuku, M.; Oku, H.; Fujita, M. Salicylic Acid: An All-Rounder in Regulating Abiotic Stress Responses in Plants. Phytohorm.-Signal. Mech. Crosstalk Plant Dev. Stress Responses 2017, 16, 31–75. [Google Scholar]
- Gull, A.; Ahmad Lone, A.; Ul Islam Wani, N. Biotic and Abiotic Stresses in Plants. In Abiotic and Biotic Stress in Plants; IntechOpen: London, UK, 2019; pp. 1–6. [Google Scholar]
- Zagorchev, L.; Stöggl, W.; Teofanova, D.; Li, J.; Kranner, I. Plant parasites under pressure: Effects of abiotic stress on the interactions between parasitic plants and their hosts. Int. J. Mol. Sci. 2021, 22, 7418. [Google Scholar] [CrossRef]
- Melo, F.V.; Oliveira, M.M.; Saibo, N.J.M.; Lourenço, T.F. Modulation of Abiotic Stress Responses in Rice by E3-Ubiquitin Ligases: A Promising Way to Develop Stress-Tolerant Crops. Front. Plant Sci. 2021, 12, 640193. [Google Scholar] [CrossRef]
- Shikha, K.; Shahi, J.P.; Vinayan, M.T.; Zaidi, P.H.; Singh, A.K.; Sinha, B. Genome-wide association mapping in maize: Status and prospects. 3 Biotech 2021, 11, 244. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhai, X.; Guo, L.; Liu, K.; Huang, D.; Yang, Y.; Li, J.; Xie, S.; Zhang, C.; Tang, S.; et al. Assessing the efficiency and sustainability of wheat production systems in different climate zones in China using emergy analysis. J. Clean. Prod. 2019, 235, 724–732. [Google Scholar] [CrossRef]
- Gietler, M.; Fidler, J.; Labudda, M.; Nykiel, M. Abscisic Acid—Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int. J. Mol. Sci. 2020, 21, 4607. [Google Scholar] [CrossRef] [PubMed]
- Aidoo, M.K.; Sherman, T.; Lazarovitch, N.; Fait, A.; Rachmilevitch, S. A bell pepper cultivar tolerant to chilling enhanced nitrogen allocation and stress-related metabolite accumulation in the roots in response to low root-zone temperature. Physiol. Plant. 2017, 161, 196–210. [Google Scholar] [CrossRef]
- Ullah, A.; Sun, H.; Hakim; Yang, X.; Zhang, X. A novel cotton WRKY gene, GhWRKY6 -like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiol. Plant. 2018, 162, 439–454. [Google Scholar] [CrossRef]
- Narendrula-Kotha, R.; Theriault, G.; Mehes-Smith, M.; Kalubi, K.; Nkongolo, K. Metal Toxicity and Resistance in Plants and Microorganisms in Terrestrial Ecosystems. In Reviews of Environmental Contamination and Toxicology; Springer: Cham, Switzerland, 2019; pp. 1–27. [Google Scholar]
- Sasidharan, R.; Bailey-Serres, J.; Ashikari, M.; Atwell, B.J.; Colmer, T.D.; Fagerstedt, K.; Fukao, T.; Geigenberger, P.; Hebelstrup, K.H.; Hill, R.D.; et al. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol. 2017, 214, 1403–1407. [Google Scholar] [CrossRef]
- Andrade, A.C.B.; Viana, J.M.S.; Pereira, H.D.; Fonseca e Silva, F. Efficiency of Bayesian quantitative trait loci mapping with full-sib progeny. Agron. J. 2020, 112, 2759–2767. [Google Scholar] [CrossRef]
- Ahmar, S.; Gill, R.A.; Jung, K.-H.; Faheem, A.; Qasim, M.U.; Mubeen, M.; Zhou, W. Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and Future Outlook. Int. J. Mol. Sci. 2020, 21, 2590. [Google Scholar] [CrossRef] [Green Version]
- Kurowska, M.M. TIP Aquaporins in Plants: Role in Abiotic Stress Tolerance. In Abiotic Stress in Plants; IntechOpen: London, UK, 2020; p. 423. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2022, 41, 1–31. [Google Scholar] [CrossRef]
- Almeida, G.D.; Nair, S.; Borém, A.; Cairns, J.; Trachsel, S.; Ribaut, J.-M.; Bänziger, M.; Prasanna, B.M.; Crossa, J.; Babu, R. Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Mol. Breed. 2014, 34, 701–715. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Lei, J.; Huang, Y.; Zhu, S.; Chen, H.; Huang, R.; Peng, Z.; Tu, Q.; Shen, X.; Yan, S. Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines. Breed. Sci. 2016, 66, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Dolferus, R.; Thavamanikumar, S.; Sangma, H.; Kleven, S.; Wallace, X.; Forrest, K.; Rebetzke, G.; Hayden, M.; Borg, L.; Smith, A.; et al. Determining the Genetic Architecture of Reproductive Stage Drought Tolerance in Wheat Using a Correlated Trait and Correlated Marker Effect Model. G3 Genes Genomes Genet. 2019, 9, 473–489. [Google Scholar] [CrossRef] [Green Version]
- Nair, M.M.; Shylaraj, K.S. Introgression of dual abiotic stress tolerance QTLs (Saltol QTL and Sub1 gene) into Rice (Oryza sativa L.) variety Aiswarya through marker assisted backcross breeding. Physiol. Mol. Biol. Plants 2021, 27, 497–514. [Google Scholar] [CrossRef]
- Ahmed, F.; Rafii, M.Y.; Ismail, M.R.; Juraimi, A.S.; Rahim, H.A.; Latif, M.A.; Hasan, M.M.; Tanweer, F.A. The addition of submergence-tolerant Sub1 gene into high yielding MR219 rice variety and analysis of its BC 2 F 3 population in terms of yield and yield contributing characters to select advance lines as a variety. Biotechnol. Biotechnol. Equip. 2016, 30, 853–863. [Google Scholar] [CrossRef]
- Liu, C.; Sukumaran, S.; Claverie, E.; Sansaloni, C.; Dreisigacker, S.; Reynolds, M. Genetic dissection of heat and drought stress QTLs in phenology-controlled synthetic-derived recombinant inbred lines in spring wheat. Mol. Breed. 2019, 39, 34. [Google Scholar] [CrossRef]
- Uga, Y.; Kitomi, Y.; Yamamoto, E.; Kanno, N.; Kawai, S.; Mizubayashi, T.; Fukuoka, S. A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice 2015, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
- Kruse, E.B.; Carle, S.W.; Wen, N.; Skinner, D.Z.; Murray, T.D.; Garland-Campbell, K.A.; Carter, A.H. Genomic Regions Associated with Tolerance to Freezing Stress and Snow Mold in Winter Wheat. G3 Genes Genomes Genet. 2017, 7, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Liu, L.; Asseng, S.; Xia, Y.; Tang, L.; Liu, B.; Cao, W.; Zhu, Y. Estimating spring frost and its impact on yield across winter wheat in China. Agric. For. Meteorol. 2018, 260–261, 154–164. [Google Scholar]
- Biswas, P.S.; Khatun, H.; Das, N.; Sarker, M.M.; Anisuzzaman, M. Mapping and validation of QTLs for cold tolerance at seedling stage in rice from an indica cultivar Habiganj Boro VI (Hbj.BVI). 3 Biotech 2017, 7, 359. [Google Scholar] [CrossRef]
- Jia, W.; Ma, M.; Chen, J.; Wu, S. Plant Morphological, Physiological and Anatomical Adaption to Flooding Stress and the Underlying Molecular Mechanisms. Int. J. Mol. Sci. 2021, 22, 1088. [Google Scholar] [CrossRef]
- Ahmad, H.M.; Mahmood-Ur-Rahman; Azeem, F.; Tahir, N.; Iqbal, M.S. QTL mapping for crop improvement against abiotic stresses in cereals. J. Anim. Plant Sci. 2018, 28, 1558–1573. [Google Scholar]
- Mukami, A.; Ng’etich, A.; Syombua, E.; Oduor, R.; Mbinda, W. Varietal differences in physiological and biochemical responses to salinity stress in six finger millet plants. Physiol. Mol. Biol. Plants 2020, 26, 1569. [Google Scholar] [CrossRef]
- Isayenkov, S.V.; Maathuis, F.J.M. Plant Salinity Stress: Many Unanswered Questions Remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Ganie, S.A.; Molla, K.A.; Henry, R.J.; Bhat, K.V.; Mondal, T.K. Advances in understanding salt tolerance in rice. Theor. Appl. Genet. 2019, 132, 851–870. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genomics 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Zhai, Y.; Wen, Z.; Fang, W.; Wang, Y.; Xi, C.; Liu, J.; Zhao, H.; Wang, Y.; Han, S. Functional analysis of rice OSCA genes overexpressed in the arabidopsis osca1 mutant due to drought and salt stresses. Transgenic Res. 2021, 30, 811–820. [Google Scholar] [CrossRef]
- Chen, J.; Zong, J.; Li, D.; Chen, Y.; Wang, Y.; Guo, H.; Li, J.; Li, L.; Guo, A.; Liu, J. Growth response and ion homeostasis in two bermudagrass (Cynodon dactylon) cultivars differing in salinity tolerance under salinity stress. Soil Sci. Plant Nutr. 2019, 65, 419–429. [Google Scholar] [CrossRef]
- Choudhary, P.; Pramitha, L.; Rana, S.; Verma, S.; Aggarwal, P.R.; Muthamilarasan, M. Hormonal crosstalk in regulating salinity stress tolerance in graminaceous crops. Physiol. Plant. 2021, 173, 1587–1596. [Google Scholar] [CrossRef]
- Hasana, R.; Miyake, H. Salinity Stress Alters Nutrient Uptake and Causes the Damage of Root and Leaf Anatomy in Maize. KnE Life Sci. 2017, 3, 219. [Google Scholar] [CrossRef] [Green Version]
- Nimir, N.E.; Guisheng, Z.; Guo, W.-S.; Ma, B.; Shiyuan, L.; Yonghui, W. Effect of Foliar Application of GA3, Kinetin, and Salicylic Acid on Ions Content, Membrane Permeability and Photosynthesis under Salt stress of Sweet Sorghum. Can. J. Plant Sci. 2016, 97, 525–535. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, J.; Wang, C.; Liao, W. Recent progress in the knowledge on the alleviating effect of nitric oxide on heavy metal stress in plants. Plant Physiol. Biochem. 2020, 147, 161–171. [Google Scholar] [CrossRef]
- Sharma, S.S.; Dietz, K.-J.; Mimura, T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant. Cell Environ. 2016, 39, 1112–1126. [Google Scholar] [CrossRef] [Green Version]
- Anwar, A.; Kim, J.K. Transgenic breeding approaches for improving abiotic stress tolerance: Recent progress and future perspectives. Int. J. Mol. Sci. 2020, 21, 2695. [Google Scholar] [CrossRef] [Green Version]
- Oladosu, Y.; Rafii, M.Y.; Samuel, C.; Fatai, A.; Magaji, U.; Kareem, I.; Kamarudin, Z.S.; Muhammad, I.; Kolapo, K. Drought Resistance in Rice from Conventional to Molecular Breeding: A Review. Int. J. Mol. Sci. 2019, 20, 3519. [Google Scholar] [CrossRef] [Green Version]
- Paudel, D.; Dhakal, S.; Parajuli, S.; Adhikari, L.; Peng, Z.; Qian, Y.; Shahi, D.; Avci, M.; Makaju, S.O.; Kannan, B. Use of quantitative trait loci to develop stress tolerance in plants. In Plant Life under Changing Environment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 917–965. [Google Scholar]
- Khan, M.A.; Iqbal, M.; Akram, M.; Ahmad, M.; Hassan, M.W.; Jamil, M. Recent advances in molecular tool development for drought tolerance breeding in cereal crops: A review. Zemdirb.-Agric. 2013, 100, 325–334. [Google Scholar] [CrossRef]
- Chen, J.; Chang, S.X.; Anyia, A.O. Gene discovery in cereals through quantitative trait loci and expression analysis in water-use efficiency measured by carbon isotope discrimination. Plant. Cell Environ. 2011, 34, 2009–2023. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Léon, J.; Naz, A.A.; Ballvora, A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. J. Exp. Bot. 2021, 72, 1007–1019. [Google Scholar] [CrossRef]
- Yadav, S.; Sandhu, N.; Singh, V.K.; Catolos, M.; Kumar, A. Genotyping-by-sequencing based QTL mapping for rice grain yield under reproductive stage drought stress tolerance. Sci. Rep. 2019, 9, 14326. [Google Scholar] [CrossRef] [Green Version]
- Shamsudin, N.A.A.; Swamy, B.P.M.; Ratnam, W.; Cruz, M.T.S.; Sandhu, N.; Raman, A.K.; Kumar, A. Pyramiding of drought yield QTLs into a high quality Malaysian rice cultivar MRQ74 improves yield under reproductive stage drought. Rice 2016, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Baisakh, N.; Yabes, J.; Gutierrez, A.; Mangu, V.; Ma, P.; Famoso, A.; Pereira, A. Genetic mapping identifies consistent quantitative trait loci for yield traits of rice under greenhouse drought conditions. Genes 2020, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Selamat, N.; Nadarajh, K.K. Meta-Analysis of Quantitative Traits Loci (QTL) Identified in Drought Response in Rice (Oryza sativa L.). Plants 2021, 10, 716. [Google Scholar] [CrossRef]
- Vikram, P.; Swamy, B.P.M.; Dixit, S.; Ahmed, H.U.; Cruz, M.T.S.; Singh, A.K.; Kumar, A. QDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet. 2011, 12, 89. [Google Scholar] [CrossRef] [Green Version]
- Mishra, K.K.; Vikram, P.; Yadaw, R.B.; Swamy, B.P.M.; Dixit, S.; Cruz, M.T.S.; Maturan, P.; Marker, S.; Kumar, A. QDTY12.1: A locus with a consistent effect on grain yield under drought in rice. BMC Genet. 2013, 14, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernier, J.; Kumar, A.; Ramaiah, V.; Spaner, D.; Atlin, G. A Large-Effect QTL for Grain Yield under Reproductive-Stage Drought Stress in Upland Rice. Crop Sci. 2007, 47, 507–516. [Google Scholar] [CrossRef]
- Mohd Ikmal, A.; Nurasyikin, Z.; Tuan Nur Aqlili Riana, T.A.; Puteri Dinie Ellina, Z.; Wickneswari, R.; Noraziyah, A.A.S. Drought Yield QTL (qDTY) with Consistent Effects on Morphological and Agronomical Traits of Two Populations of New Rice (Oryza sativa) Lines. Plants 2019, 8, 186. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Wani, S.H.; Kumar, P.; Bagaria, P.K.; Rakshit, S.; Roorkiwal, M.; Varshney, R.K. QTLian breeding for climate resilience in cereals: Progress and prospects. Funct. Integr. Genom. 2019, 19, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Liao, K.; Du, H.; Xu, Y.; Song, H.; Li, X.; Xiong, L. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J. Exp. Bot. 2015, 66, 6803–6817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.; Chung, P.J.; Park, S.H.; Redillas, M.C.F.; Kim, Y.S.; Suh, J.W.; Kim, J.K. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol. J. 2017, 15, 1295. [Google Scholar] [CrossRef] [Green Version]
- Sandhya, J.; Ashwini, T.; Manisha, R.; Vinodha, M.; Srinivas, A. Drought Tolerance Enhancement with Co-Overexpression of DREB2A and APX in Indica Rice (Oryza sativa L.). Am. J. Plant Sci. 2021, 12, 234–258. [Google Scholar] [CrossRef]
- Liang, Y.; Meng, L.; Lin, X.; Cui, Y.; Pang, Y.; Xu, J.; Li, Z. QTL and QTL networks for cold tolerance at the reproductive stage detected using selective introgression in rice. PLoS ONE 2018, 13, e0200846. [Google Scholar] [CrossRef] [Green Version]
- Endo, T.; Chiba, B.; Wagatsuma, K.; Saeki, K.; Ando, T.; Shomura, A.; Mizubayashi, T.; Ueda, T.; Yamamoto, T.; Nishio, T. Detection of QTLs for cold tolerance of rice cultivar ‘Kuchum’ and effect of QTL pyramiding. Theor. Appl. Genet. 2016, 129, 631–640. [Google Scholar] [CrossRef]
- Shirasawa, S.; Endo, T.; Nakagomi, K.; Yamaguchi, M.; Nishio, T. Delimitation of a QTL region controlling cold tolerance at booting stage of a cultivar, ‘Lijiangxintuanheigu’, in rice, Oryza sativa L. Theor. Appl. Genet. 2012, 124, 937–946. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, K.; Mi, X.; Chen, T.; Ali, J.; Ye, G.; Xu, J.; Li, Z. Identification and Fine Mapping of a Stably Expressed QTL for Cold Tolerance at the Booting Stage Using an Interconnected Breeding Population in Rice. PLoS ONE 2015, 10, e0145704. [Google Scholar] [CrossRef] [PubMed]
- Andaya, V.C.; Tai, T.H. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor. Appl. Genet. 2006, 113, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Dai, X.; Xu, Y.; Luo, W.; Zheng, X.; Zeng, D.; Pan, Y.; Lin, X.; Liu, H.; Zhang, D.; et al. COLD1 Confers Chilling Tolerance in Rice. Cell 2015, 160, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Septiningsih, E.M.; Hidayatun, N.; Sanchez, D.L.; Nugraha, Y.; Carandang, J.; Pamplona, A.M.; Collard, B.C.Y.; Ismail, A.M.; Mackill, D.J. Accelerating the development of new submergence tolerant rice varieties: The case of Ciherang-Sub1 and PSB Rc18-Sub. Euphytica 2015, 202, 259–268. [Google Scholar] [CrossRef]
- Ikmal, A.M.; Amira, I.; Noraziyah, A.A.S. Morpho-physiological responses of rice towards submergence tolerance. Int. J. Agric. Biol. 2019, 22, 35–42. [Google Scholar]
- Phukan, U.J.; Jeena, G.S.; Shukla, R.K. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Front. Plant Sci. 2016, 7, 760. [Google Scholar] [CrossRef] [Green Version]
- Septiningsih, E.M.; Sanchez, D.L.; Singh, N.; Sendon, P.M.D.; Pamplona, A.M.; Heuer, S.; Mackill, D.J. Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theor. Appl. Genet. 2012, 124, 867–874. [Google Scholar] [CrossRef]
- Xu, K.; Mackill, D.J. A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed. 1996, 2, 219–224. [Google Scholar] [CrossRef]
- Karahara, I.; Horie, T. Functions and structure of roots and their contributions to salinity tolerance in plants. Breed. Sci. 2021, 71, 89. [Google Scholar] [CrossRef]
- Ismail, A.M.; Horie, T. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. Annu. Rev. Plant Biol. 2017, 68, 405–434. [Google Scholar] [CrossRef] [Green Version]
- Nakhla, W.R.; Sun, W.; Fan, K.; Yang, K.; Zhang, C.; Yu, S. Identification of QTLs for Salt Tolerance at the Germination and Seedling Stages in Rice. Plants 2021, 10, 428. [Google Scholar] [CrossRef] [PubMed]
- Amoah, N.K.A.; Akromah, R.; Kena, A.W.; Manneh, B.; Dieng, I.; Bimpong, I.K. Mapping QTLs for tolerance to salt stress at the early seedling stage in rice (Oryza sativa L.) using a newly identified donor ‘Madina Koyo’. Euphytica 2020, 216, 156. [Google Scholar] [CrossRef]
- Lei, L.; Zheng, H.; Bi, Y.; Yang, L.; Liu, H.; Wang, J.; Sun, J.; Zhao, H.; Li, X.; Li, J.; et al. Identification of a Major QTL and Candidate Gene Analysis of Salt Tolerance at the Bud Burst Stage in Rice (Oryza sativa L.) Using QTL-Seq and RNA-Seq. Rice 2020, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Zhu, P.; Qian, L.; Qian, X.; Mi, Y.; Lin, Z.; Dong, S.; Aronsson, H.; Zhang, H.; Cheng, J. Identification and fine mapping of qGR6.2, a novel locus controlling rice seed germination under salt stress. BMC Plant Biol. 2021, 21, 36. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yang, B.; He, Y.; Zhan, C.; Cheng, Y.; Zhang, J.; Zhang, H.; Cheng, J.; Wang, Z. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. Plant J. 2019, 97, 1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Bao, X.; Zhi, Y.; Wu, Q.; Guo, Y.; Yin, X.; Zeng, L.; Li, J.; Zhang, J.; He, W.; et al. Overexpression of a MYB Family Gene, OsMYB6, Increases Drought and Salinity Stress Tolerance in Transgenic Rice. Front. Plant Sci. 2019, 10, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Fan, R.; Guo, S.; Wang, P.; Zhu, X.; Fan, Y.; Chen, Y.; He, K.; Kumar, A.; Shi, J.; et al. The Arabidopsis MYB transcription factor, MYB111 modulates salt responses by regulating flavonoid biosynthesis. Environ. Exp. Bot. 2019, 166, 103807. [Google Scholar] [CrossRef]
- Sun, L.; Xu, X.; Jiang, Y.; Zhu, Q.; Yang, F.; Zhou, J.; Yang, Y.; Huang, Z.; Li, A.; Chen, L.; et al. Genetic Diversity, Rather than Cultivar Type, Determines Relative Grain Cd Accumulation in Hybrid Rice. Front. Plant Sci. 2016, 7, 1407. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.-F.; Lestari, P.; Lee, K.-J.; Kim, M.Y.; Lee, S.-H.; Lee, B.-W. Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Genome 2013, 56, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.-S.; Huang, J.; Zeng, D.-L.; Peng, J.-S.; Zhang, G.-B.; Ma, H.-L.; Guan, Y.; Yi, H.-Y.; Fu, Y.-L.; Han, B.; et al. A defensin-like protein drives cadmium efflux and allocation in rice. Nat. Commun. 2018, 9, 645. [Google Scholar] [CrossRef] [Green Version]
- Ueno, D.; Yamaji, N.; Kono, I.; Huang, C.F.; Ando, T.; Yano, M.; Ma, J.F. Gene limiting cadmium accumulation in rice. Proc. Natl. Acad. Sci. USA 2010, 107, 16500–16505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Pan, X.; Li, Y.; Duan, Y.; Min, J.; Liu, S.; Liu, L.; Sheng, X.; Li, X. Identification of QTLs and Validation of qCd-2 Associated with Grain Cadmium Concentrations in Rice. Rice Sci. 2019, 26, 42–49. [Google Scholar] [CrossRef]
- Sikirou, M.; Shittu, A.; Konaté, K.A.; Maji, A.T.; Ngaujah, A.S.; Sanni, K.A.; Ogunbayo, S.A.; Akintayo, I.; Saito, K.; Dramé, K.N.; et al. Screening African rice (Oryza glaberrima) for tolerance to abiotic stresses: I. Fe toxicity. Field Crops Res. 2018, 220, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufey, I.; Draye, X.; Lutts, S.; Lorieux, M.; Martinez, C.; Bertin, P. Novel QTLs in an interspecific backcross Oryza sativa × Oryza glaberrima for resistance to iron toxicity in rice. Euphytica 2015, 204, 609–625. [Google Scholar] [CrossRef]
- Murugaiyan, V.; Ali, J.; Mahender, A.; Aslam, U.M.; Jewel, Z.A.; Pang, Y.; Marfori-Nazarea, C.M.; Wu, L.-B.; Frei, M.; Li, Z. Mapping of genomic regions associated with arsenic toxicity stress in a backcross breeding populations of rice (Oryza sativa L.). Rice 2019, 12, 61. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, T.; Mu, P.; Li, Z.; Yang, L. Quantitative Trait Loci for Mercury Tolerance in Rice Seedlings. Rice Sci. 2013, 20, 238–242. [Google Scholar] [CrossRef]
- Sun, J.; Yang, L.; Wang, J.; Liu, H.; Zheng, H.; Xie, D.; Zhang, M.; Feng, M.; Jia, Y.; Zhao, H.; et al. Identification of a cold-tolerant locus in rice (Oryza sativa L.) using bulked segregant analysis with a next-generation sequencing strategy. Rice 2018, 11, 24. [Google Scholar] [CrossRef]
- Ueno, D.; Koyama, E.; Kono, I.; Ando, T.; Yano, M.; Ma, J.F. Identification of a Novel Major Quantitative Trait Locus Controlling Distribution of Cd Between Roots and Shoots in Rice. Plant Cell Physiol. 2009, 50, 2223–2233. [Google Scholar] [CrossRef] [Green Version]
- Pawar, S.; Pandit, E.; Mohanty, I.C.; Saha, D.; Pradhan, S.K. Population genetic structure and association mapping for iron toxicity tolerance in rice. PLoS ONE 2021, 16, e0246232. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Chen, M.; Zheng, G.; Peng, Y.; Shi, X.; Qin, P.; Xu, X.; Teng, S. Association Study Reveals Genetic Loci Responsible for Arsenic, Cadmium and Lead Accumulation in Rice Grain in Contaminated Farmlands. Front. Plant Sci. 2019, 10, 61. [Google Scholar] [CrossRef]
- Shakiba, E.; Edwards, J.D.; Jodari, F.; Duke, S.E.; Baldo, A.M.; Korniliev, P.; McCouch, S.R.; Eizenga, G.C. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. PLoS ONE 2017, 12, e0172133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Lei, L.; Li, P.; Wang, J.; Wang, C.; Yang, F.; Chen, J.; Liu, H.; Zheng, H.; Xin, W.; et al. Identification of Candidate Genes Conferring Cold Tolerance to Rice (Oryza sativa L.) at the Bud-Bursting Stage Using Bulk Segregant Analysis Sequencing and Linkage Mapping. Front. Plant Sci. 2021, 12, 647239. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Mackill, D.J.; Ismail, A.M. Physiological basis of tolerance to complete submergence in rice involves genetic factors in addition to the SUB1 gene. AoB Plants 2014, 6, plu060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dar, M.H.; Chakravorty, R.; Waza, S.A.; Sharma, M.; Zaidi, N.W.; Singh, A.N.; Singh, U.S.; Ismail, A.M. Transforming rice cultivation in flood prone coastal Odisha to ensure food and economic security. Food Secur. 2017, 9, 711–722. [Google Scholar] [CrossRef]
- Khanh, D. Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into the Vietnamese elite rice variety. J. Plant Breed. Crop Sci. 2013, 5, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Amin, A.; Iftekharuddaula, K.; Sarker, A.; Ghoshal, S.; Aditya, T.; Talukder, A.; Sabrin, F.; Billah, M.; Collard, B. Introgression of SUB1 QTL into BR22 Using Marker Assisted Backcrossing. Int. J. Plant Biol. Res. 2019, 6, 9. [Google Scholar]
- Goering, R.; Larsen, S.; Tan, J.; Whelan, J.; Makarevitch, I. QTL mapping of seedling tolerance to exposure to low temperature in the maize IBM RIL population. PLoS ONE 2021, 16, e0254437. [Google Scholar] [CrossRef]
- Leng, P.; Khan, S.U.; Zhang, D.; Zhou, G.; Zhang, X.; Zheng, Y.; Wang, T.; Zhao, J. Linkage Mapping Reveals QTL for Flowering Time-Related Traits under Multiple Abiotic Stress Conditions in Maize. Int. J. Mol. Sci. 2022, 23, 8410. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Fang, P.; Peng, Y. Comparative qtl analysis for yield components and morphological traits in maize (Zea mays L.) under water-stressed and well-watered conditions. Breed. Sci. 2019, 69, 621–632. [Google Scholar] [CrossRef] [Green Version]
- Abdelghany, M.; Liu, X.; Hao, L.; Gao, C.; Kou, S.; Su, E.; Zhou, Y.; Wang, R.; Zhang, D.; Li, Y.; et al. QTL analysis for yield-related traits under different water regimes in maize. Maydica 2019, 64, 10. [Google Scholar]
- Li, P.; Zhang, Y.; Yin, S.; Zhu, P.; Pan, T.; Xu, Y.; Wang, J.; Hao, D.; Fang, H.; Xu, C.; et al. QTL-By-Environment Interaction in the Response of Maize Root and Shoot Traits to Different Water Regimes. Front. Plant Sci. 2018, 9, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trachsel, S.; Sun, D.; Sanvicente, F.M.; Zheng, H.; Atlin, G.N.; Suarez, E.A.; Babu, R.; Zhang, X. Identification of QTL for Early Vigor and Stay-Green Conferring Tolerance to Drought in Two Connected Advanced Backcross Populations in Tropical Maize (Zea mays L.). PLoS ONE 2016, 11, e0149636. [Google Scholar]
- Liu, S.; Qin, F. Genetic dissection of maize drought tolerance for trait improvement. Mol. Breed. 2021, 41, 1–13. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Wang, H.; Xin, H.; Yang, X.; Yan, J.; Li, J.; Tran, L.-S.P.; Shinozaki, K.; Yamaguchi-Shinozaki, K.; et al. Genome-Wide Analysis of ZmDREB Genes and Their Association with Natural Variation in Drought Tolerance at Seedling Stage of Zea mays L. PLoS Genet. 2013, 9, e1003790. [Google Scholar] [CrossRef] [Green Version]
- Allam, M.; Revilla, P.; Djemel, A.; Tracy, W.F.; Ordás, B. Identification of QTLs involved in cold tolerance in sweet × field corn. Euphytica 2016, 208, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Lübberstedt, T.; Zhao, G.; Lee, M. QTL Mapping of Low-Temperature Germination Ability in the Maize IBM Syn4 RIL Population. PLoS ONE 2016, 11, e0152795. [Google Scholar] [CrossRef] [Green Version]
- Shimono, H.; Abe, A.; Aoki, N.; Koumoto, T.; Sato, M.; Yokoi, S.; Kuroda, E.; Endo, T.; Saeki, K.; Nagano, K. Combining mapping of physiological quantitative trait loci and transcriptome for cold tolerance for counteracting male sterility induced by low temperatures during reproductive stage in rice. Physiol. Plant. 2016, 157, 175–192. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, Z.; Xi, Y.; Yang, Z.; Xiao, Z.; Guan, S.; Qu, J.; Wang, P.; Zhao, R. Identification and Functional Verification of Cold Tolerance Genes in Spring Maize Seedlings Based on a Genome-Wide Association Study and Quantitative Trait Locus Mapping. Front. Plant Sci. 2021, 12, 525–534. [Google Scholar] [CrossRef]
- Han, Q.; Zhu, Q.; Shen, Y.; Lee, M.; Lübberstedt, T.; Zhao, G. QTL Mapping Low-Temperature Germination Ability in the Maize IBM Syn10 DH Population. Plants 2022, 11, 214. [Google Scholar] [CrossRef]
- Ma, Y.; Tan, R.; Zhao, J. Chilling Tolerance in Maize: Insights into Advances—Toward Physio-Biochemical Responses’ and QTL/Genes’ Identification. Plants 2022, 11, 2082. [Google Scholar] [CrossRef]
- Qiu, F.; Zheng, Y.; Zhang, Z.; Xu, S. Mapping of QTL Associated with Waterlogging Tolerance during the Seedling Stage in Maize. Ann. Bot. 2007, 99, 1067–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, M.T.; Proctor, C.A.; Dou, Y.; Schmitz, A.J.; Phansak, P.; Kruger, G.R.; Zhang, C.; Walia, H. Genetic and molecular characterization of submergence response identifies Subtol6 as a major submergence tolerance locus in maize. PLoS ONE 2015, 10, e0120385. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Liang, K.; Fang, T.; Zhao, H.; Han, X.; Cai, M.; Qiu, F. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol. J. 2019, 17, 2286–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Zhu, J.; Su, H.; Huang, M.; Wang, H.; Ding, S.; Zhang, B.; Luo, A.; Wei, S.; Tian, X.; et al. Bulked segregant RNA-seq reveals differential expression and SNPs of candidate genes associated with waterlogging tolerance in maize. Front. Plant Sci. 2017, 8, 1022. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Choudhary, M.; Halder, T.; Prakash, N.R.; Singh, V.; Sheoran, S.; Longmei, N.; Rakshit, S.; Siddique, K.H. Salinity stress tolerance and omics approaches: Revisiting the progress and achievements in major cereal crops. Heredity 2022, 128, 497–518. [Google Scholar] [CrossRef]
- Luo, M.; Zhao, Y.; Zhang, R.; Xing, J.; Duan, M.; Li, J.; Wang, N.; Wang, W.; Zhang, S.; Chen, Z.; et al. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biol. 2017, 17, 140. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Zhang, Y.; Chen, K.; Kong, M.; Song, W.; Lu, B.; Shi, Y.; Zhao, Y.; Zhao, J. Mapping of quantitative trait loci for seedling salt tolerance in maize. Mol. Breed. 2019, 39, 64. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, Y.; Wang, Z.; Wang, Z.; Shi, J.; Liang, X.; Song, W.; Chen, Q.; Lai, J.; Jiang, C. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na + exclusion and salt tolerance in maize. New Phytol. 2018, 217, 1161–1176. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.; Li, W.; Xing, X.; Xu, M.; Liu, X.; Li, H.; Xue, Y.; Liu, Z.; Tang, J. Genetic analysis of arsenic accumulation in maize using QTL mapping. Sci. Rep. 2016, 6, 21292. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Luo, L.; Cao, Y.; Liu, Y.; Li, Y.; Wu, W.; Lan, Y.; Jiang, Y.; Gao, S.; Zhang, Z.; et al. Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. BMC Genom. 2018, 19, 91. [Google Scholar] [CrossRef] [Green Version]
- Hou, F.; Zhou, X.; Liu, P.; Yuan, G.; Zou, C.; Lübberstedt, T.; Pan, G.; Ma, L.; Shen, Y. Genetic dissection of maize seedling traits in an IBM Syn10 DH population under the combined stress of lead and cadmium. Mol. Genet. Genom. 2021, 296, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Wasaya, A.; Zhang, X.; Fang, Q.; Yan, Z. Root Phenotyping for Drought Tolerance: A Review. Agronomy 2018, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Rabbi, S.M.H.A.; Kumar, A.; Mohajeri Naraghi, S.; Simsek, S.; Sapkota, S.; Solanki, S.; Alamri, M.S.; Elias, E.M.; Kianian, S.; Missaoui, A.; et al. Genome-Wide Association Mapping for Yield and Related Traits Under Drought Stressed and Non-stressed Environments in Wheat. Front. Genet. 2021, 12, 649988. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.M.; Colasuonno, P.; Marcotuli, I.; Gadaleta, A. Meta-QTL analysis and identification of candidate genes for quality, abiotic and biotic stress in durum wheat. Sci. Rep. 2021, 11, 11877. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Balyan, H.S.; Sharma, S.; Kumar, R. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2020, 133, 1569–1602. [Google Scholar] [CrossRef]
- Tura, H.; Edwards, J.; Gahlaut, V.; Garcia, M.; Sznajder, B.; Baumann, U.; Shahinnia, F.; Reynolds, M.; Langridge, P.; Balyan, H.S.; et al. QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments. Theor. Appl. Genet. 2020, 133, 239–257. [Google Scholar] [CrossRef]
- Gautam, T.; Amardeep; Saripalli, G.; Rakhi; Kumar, A.; Gahlaut, V.; Gadekar, D.A.; Oak, M.; Sharma, P.K.; Balyan, H.S.; et al. Introgression of a drought insensitive grain yield QTL for improvement of four Indian bread wheat cultivars using marker assisted breeding without background selection. J. Plant Biochem. Biotechnol. 2021, 30, 172–183. [Google Scholar] [CrossRef]
- Colasuonno, P.; Marcotuli, I.; Gadaleta, A.; Soriano, J.M. From Genetic Maps to QTL Cloning: An Overview for Durum Wheat. Plants 2021, 10, 315. [Google Scholar] [CrossRef]
- Alahmad, S.; El Hassouni, K.; Bassi, F.M.; Dinglasan, E.; Youssef, C.; Quarry, G.; Aksoy, A.; Mazzucotelli, E.; Juhász, A.; Able, J.A.; et al. A Major Root Architecture QTL Responding to Water Limitation in Durum Wheat. Front. Plant Sci. 2019, 10, 436. [Google Scholar] [CrossRef] [Green Version]
- Maccaferri, M.; El-Feki, W.; Nazemi, G.; Salvi, S.; Canè, M.A.; Colalongo, M.C.; Stefanelli, S.; Tuberosa, R. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J. Exp. Bot. 2016, 67, 1161. [Google Scholar] [CrossRef]
- Rabbi, S.M.H.A.; Kumar, A.; Mohajeri Naraghi, S.; Sapkota, S.; Alamri, M.S.; Elias, E.M.; Kianian, S.; Seetan, R.; Missaoui, A.; Solanki, S.; et al. Identification of Main-Effect and Environmental Interaction QTL and Their Candidate Genes for Drought Tolerance in a Wheat RIL Population Between Two Elite Spring Cultivars. Front. Genet. 2021, 12, 656037. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Saripalli, G.; Jan, I.; Kumar, K.; Sharma, P.K.; Balyan, H.S.; Gupta, P.K. Meta-QTL analysis and identification of candidate genes for drought tolerance in bread wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2020, 26, 1713. [Google Scholar] [CrossRef] [PubMed]
- Galiba, G.; Quarrie, S.A.; Sutka, J.; Morgounov, A.; Snape, J.W. RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor. Appl. Genet. 1995, 90, 1174–1179. [Google Scholar] [CrossRef] [PubMed]
- Würschum, T.; Longin, C.F.H.; Hahn, V.; Tucker, M.R.; Leiser, W.L. Copy number variations of CBF genes at the Fr-A2 locus are essential components of winter hardiness in wheat. Plant J. 2017, 89, 764–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snape, J.W.; Sarma, R.; Quarrie, S.A.; Fish, L.; Galiba, G.; Sutka, J. Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica 2001, 120, 309–315. [Google Scholar] [CrossRef]
- Fowler, D.B.; N’Diaye, A.; Laudencia-Chingcuanco, D.; Pozniak, C.J. Quantitative Trait Loci Associated with Phenological Development, Low-Temperature Tolerance, Grain Quality, and Agronomic Characters in Wheat (Triticum aestivum L.). PLoS ONE 2016, 11, e0152185. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Shi, Y.; Yang, S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 2019, 222, 1690–1704. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, M.M.M.; Patra, A.; Vashisth, M.; Mehta, S.; Singh, B.; Tiwari, M.; Pandey, V. The role of key transcription factors for cold tolerance in plants. In Transcription Factors for Abiotic Stress Tolerance in Plants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 123–152. [Google Scholar]
- Guo, X.; Liu, D.; Chong, K. Cold signaling in plants: Insights into mechanisms and regulation. J. Integr. Plant Biol. 2018, 60, 745–756. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zheng, Q.; Shen, W.; Cram, D.; Fowler, D.B.; Wei, Y.; Zou, J. Understanding the Biochemical Basis of Temperature-Induced Lipid Pathway Adjustments in Plants. Plant Cell 2015, 27, 86–103. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Mao, S.; Chen, G.; Liu, Y.; Li, W.; Wei, Y.; Liu, C.; Zheng, Y. QTLs for Waterlogging Tolerance at Germination and Seedling Stages in Population of Recombinant Inbred Lines Derived from a Cross Between Synthetic and Cultivated Wheat Genotypes. J. Integr. Agric. 2014, 13, 31–39. [Google Scholar] [CrossRef]
- Ballesteros, D.C.; Mason, R.E.; Addison, C.K.; Andrea Acuña, M.; Nelly Arguello, M.; Subramanian, N.; Miller, R.G.; Sater, H.; Gbur, E.E.; Miller, D.; et al. Tolerance of wheat to vegetative stage soil waterlogging is conditioned by both constitutive and adaptive QTL. Euphytica 2015, 201, 329–343. [Google Scholar] [CrossRef]
- Wei, X.; Xu, H.; Rong, W.; Ye, X.; Zhang, Z. Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield. Plant. Cell Environ. 2019, 42, 1471–1485. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.; Ram, S.; Rana, V.; Malik, V.K.; Pande, V.; Singh, G.P. QTL mapping for salt tolerance associated traits in wheat (Triticum aestivum L.). Euphytica 2019, 215, 210. [Google Scholar] [CrossRef]
- Lindsay, M.P.; Lagudah, E.S.; Hare, R.A.; Munns, R. A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct. Plant Biol. 2004, 31, 1105. [Google Scholar] [CrossRef] [Green Version]
- Hussain, B.; Lucas, S.J.; Ozturk, L.; Budak, H. Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat. Sci. Rep. 2017, 7, 15662. [Google Scholar] [CrossRef] [Green Version]
- Pal, N.; Saini, D.K.; Kumar, S. Meta-QTLs, ortho-MQTLs and candidate genes for the traits contributing to salinity stress tolerance in common wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2021, 27, 2767–2786. [Google Scholar] [CrossRef]
- Almas, F.; Hassan, A.; Bibi, A.; Ali, M.; Lateef, S.; Mahmood, T.; Rasheed, A.; Quraishi, U.M. Identification of genome-wide single-nucleotide polymorphisms (SNPs) associated with tolerance to chromium toxicity in spring wheat (Triticum aestivum L.). Plant Soil 2018, 422, 371–384. [Google Scholar] [CrossRef]
- AbuHammad, W.A.; Mamidi, S.; Kumar, A.; Pirseyedi, S.; Manthey, F.A.; Kianian, S.F.; Alamri, M.S.; Mergoum, M.; Elias, E.M. Identification and validation of a major cadmium accumulation locus and closely associated SNP markers in North Dakota durum wheat cultivars. Mol. Breed. 2016, 36, 112. [Google Scholar] [CrossRef]
- Oladzad-Abbasabadi, A.; Kumar, A.; Pirseyedi, S.; Salsman, E.; Dobrydina, M.; Poudel, R.S.; AbuHammad, W.A.; Chao, S.; Faris, J.D.; Elias, E.M. Identification and Validation of a New Source of Low Grain Cadmium Accumulation in Durum Wheat. G3 Genes Genomes Genet. 2018, 8, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Wheeler, J.; Wang, R.; Isham, K.; Klassen, N.; Zhao, W.; Su, M.; Zhang, J.; Zheng, J.; Chen, J. Novel Quantitative Trait Loci for Grain Cadmium Content Identified in Hard White Spring Wheat. Front. Plant Sci. 2021, 12, 756741. [Google Scholar] [CrossRef]
- Navakode, S.; Weidner, A.; Lohwasser, U.; Röder, M.S.; Börner, A. Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 2009, 166, 283–290. [Google Scholar] [CrossRef]
- Schnurbusch, T.; Collins, N.C.; Eastwood, R.F.; Sutton, T.; Jefferies, S.P.; Langridge, P. Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor. Appl. Genet. 2007, 115, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Zhao, X.; Qin, Y.; Irfan, M.; Kim, T.H.; Wang, B.; Wang, S.; Sohn, J.K. Quantitative trait loci mapping of panicle traits in rice. Mol. Biol. Res. Commun. 2019, 8, 9–15. [Google Scholar] [PubMed]
- Li, Q.; Pan, Z.; Gao, Y.; Li, T.; Liang, J.; Zhang, Z.; Zhang, H.; Deng, G.; Long, H.; Yu, M. Quantitative Trait Locus (QTLs) Mapping for Quality Traits of Wheat Based on High Density Genetic Map Combined with Bulked Segregant Analysis RNA-seq (BSR-Seq) Indicates That the Basic 7S Globulin Gene Is Related to Falling Number. Front. Plant Sci. 2020, 11, 600788. [Google Scholar] [CrossRef] [PubMed]
- Phansak, P.; Soonsuwon, W.; Hyten, D.L.; Song, Q.; Cregan, P.B.; Graef, G.L.; Specht, J.E. Multi-Population Selective Genotyping to Identify Soybean [ Glycine max (L.) Merr.] Seed Protein and Oil QTLs. G3 Genes Genomes Genet. 2016, 6, 1635–1648. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Y.; Zhou, W.; Zheng, S.; Ye, R. Detection of candidate gene networks involved in resistance to Sclerotinia sclerotiorum in soybean. J. Appl. Genet. 2022, 63, 1–14. [Google Scholar] [CrossRef]
- Pang, Y.; Wu, Y.; Liu, C.; Li, W.; St. Amand, P.; Bernardo, A.; Wang, D.; Dong, L.; Yuan, X.; Zhang, H.; et al. High-resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat. Theor. Appl. Genet. 2021, 134, 2857–2873. [Google Scholar] [CrossRef]
- Ogbonnaya, F.C.; Rasheed, A.; Okechukwu, E.C.; Jighly, A.; Makdis, F.; Wuletaw, T.; Hagras, A.; Uguru, M.I.; Agbo, C.U. Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor. Appl. Genet. 2017, 130, 1819–1835. [Google Scholar] [CrossRef]
- Sandhu, N.; Dixit, S.; Swamy, B.P.M.; Vikram, P.; Venkateshwarlu, C.; Catolos, M.; Kumar, A. Positive interactions of major-effect QTLs with genetic background that enhances rice yield under drought. Sci. Rep. 2018, 8, 1626. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; An, Y.; Li, Y.; Li, C.; Shi, Y.; Song, Y. Candidate Loci for Yield-Related Traits in Maize Revealed by a Combination of MetaQTL Analysis and Regional Association Mapping. Front. Plant Sci. 2017, 8, 2190. [Google Scholar] [CrossRef] [Green Version]
- Oo, K.S.; Krishnan, S.G.; Vinod, K.K.; Dhawan, G.; Dwivedi, P.; Kumar, P.; Bhowmick, P.K.; Pal, M.; Chinnuswamy, V.; Nagarajan, M.; et al. Molecular Breeding for Improving Productivity of Oryza sativa L. cv. Pusa 44 under Reproductive Stage Drought Stress through Introgression of a Major QTL, qDTY12. Genes 2021, 12, 967. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huai, D.; Zhang, Z.; Cheng, K.; Kang, Y.; Wan, L.; Yan, L.; Jiang, H.; Lei, Y.; Liao, B. Development of a High-Density Genetic Map Based on Specific Length Amplified Fragment Sequencing and Its Application in Quantitative Trait Loci Analysis for Yield-Related Traits in Cultivated Peanut. Front. Plant Sci. 2018, 9, 827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Hao, C.; Zhang, Y.; Cheng, J.; Zhang, Z.; Liu, J.; Yi, X.; Cheng, X.; Sun, D.; Xu, Y.; et al. A Combined Association Mapping and Linkage Analysis of Kernel Number Per Spike in Common Wheat (Triticum aestivum L.). Front. Plant Sci. 2017, 8, 1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, S.K.; Pandit, E.; Pawar, S.; Bharati, B.; Chatopadhyay, K.; Singh, S.; Dash, P.; Reddy, J.N. Association mapping reveals multiple QTLs for grain protein content in rice useful for biofortification. Mol. Genet. Genom. 2019, 294, 963–983. [Google Scholar] [CrossRef]
- Saleem, S.; Bari, A.; Abid, B.; Tahir ul Qamar, M.; Atif, R.M.; Khan, M.S. QTL Mapping for Abiotic Stresses in Cereals. In Environment, Climate, Plant and Vegetation Growth; Springer International Publishing: Cham, Switzerland, 2020; pp. 229–251. [Google Scholar]
- Emebiri, L.; Singh, S.; Tan, M.-K.; Singh, P.K.; Fuentes-Dávila, G.; Ogbonnaya, F. Unravelling the Complex Genetics of Karnal Bunt (Tilletia indica) Resistance in Common Wheat (Triticum aestivum) by Genetic Linkage and Genome-Wide Association Analyses. G3 Genes Genomes Genet. 2019, 9, 1437–1447. [Google Scholar] [CrossRef] [Green Version]
- Acquaah, G. Conventional Plant Breeding Principles and Techniques. In Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools; Springer International Publishing: Cham, Switzerland, 2015; pp. 115–158. [Google Scholar]
- Kamboj, D.; Kumar, S.; Mishra, C.N.; Srivastava, P.; Singh, G.; Singh, G.P. Marker assisted breeding in cereals: Progress made and challenges in India Cite this paper Marker assisted breeding in cereals: Progress made and challenges in India Citation. J. Cereal Res. 2020, 12, 85–102. [Google Scholar] [CrossRef]
- da Silva Linge, C.; Antanaviciute, L.; Abdelghafar, A.; Arús, P.; Bassi, D.; Rossini, L.; Ficklin, S.; Gasic, K. High-density multi-population consensus genetic linkage map for peach. PLoS ONE 2018, 13, e0207724. [Google Scholar] [CrossRef]
- Jasim Aljumaili, S.; Rafii, M.Y.; Latif, M.A.; Sakimin, S.Z.; Arolu, I.W.; Miah, G. Genetic Diversity of Aromatic Rice Germplasm Revealed by SSR Markers. Biomed Res. Int. 2018, 2018, 7658032. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-K.; Sa, K.J.; Park, D.H.; Lim, S.E.; Ryu, S.-H.; Park, J.Y.; Park, K.J.; Rhee, H.-I.; Lee, M.; Lee, J.K. Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers. Genes Genom. 2019, 41, 667–678. [Google Scholar] [CrossRef]
- Varshney, R.K.; Kudapa, H.; Roorkiwal, M.; Thudi, M.; Pandey, M.K.; Saxena, R.K.; Chamarthi, S.K.; Mallikarjuna, N.; Upadhyaya, H.; Gaur, P.M.; et al. Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. J. Biosci. 2012, 37, 811–820. [Google Scholar] [CrossRef] [Green Version]
- Shabir, G.; Aslam, K.; Khan, A.R.; Shahid, M.; Manzoor, H.; Noreen, S.; Khan, M.A.; Baber, M.; Sabar, M.; Shah, S.M.; et al. Rice molecular markers and genetic mapping: Current status and prospects. J. Integr. Agric. 2017, 16, 1879–1891. [Google Scholar] [CrossRef]
- Cseh, A.; Yang, C.; Hubbart-Edwards, S.; Scholefield, D.; Ashling, S.S.; Burridge, A.J.; Wilkinson, P.A.; King, I.P.; King, J.; Grewal, S. Development and validation of an exome-based SNP marker set for identification of the St, Jr and Jvs genomes of Thinopyrym intermedium in a wheat background. Theor. Appl. Genet. 2019, 132, 1555–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Li, J.; Zhao, R.; Xu, K.; Xiao, Y.; Zhang, S.; Tian, J.; Yang, X. Genome-wide association study reveals the genetic basis of cold tolerance in wheat. Mol. Breed. 2020, 40, 36. [Google Scholar] [CrossRef]
- He, J.; Zhao, X.; Laroche, A.; Lu, Z.-X.; Liu, H.; Li, Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 2014, 5, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattarai, U.; Subudhi, P.K. Identification of drought responsive QTLs during vegetative growth stage of rice using a saturated GBS-based SNP linkage map. Euphytica 2018, 214, 38. [Google Scholar] [CrossRef]
- Alipour, H.; Bihamta, M.R.; Mohammadi, V.; Peyghambari, S.A.; Bai, G.; Zhang, G. Genotyping-by-Sequencing (GBS) Revealed Molecular Genetic Diversity of Iranian Wheat Landraces and Cultivars. Front. Plant Sci. 2017, 8, 1293. [Google Scholar] [CrossRef]
- Hyun, D.Y.; Sebastin, R.; Lee, K.J.; Lee, G.-A.; Shin, M.-J.; Kim, S.H.; Lee, J.-R.; Cho, G.-T. Genotyping-by-Sequencing Derived Single Nucleotide Polymorphisms Provide the First Well-Resolved Phylogeny for the Genus Triticum (Poaceae). Front. Plant Sci. 2020, 11, 688. [Google Scholar] [CrossRef]
- Tardieu, F.; Cabrera-Bosquet, L.; Pridmore, T.; Bennett, M. Plant Phenomics, From Sensors to Knowledge. Curr. Biol. 2017, 27, R770–R783. [Google Scholar] [CrossRef]
- Dadshani, S.; Sharma, R.C.; Baum, M.; Ogbonnaya, F.C.; Léon, J.; Ballvora, A. Multi-dimensional evaluation of response to salt stress in wheat. PLoS ONE 2019, 14, e0222659. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol. Biotechnol. Equip. 2016, 30, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Amano, E. Use of Induced Mutants in Rice Breeding in Japan. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:38047369 (accessed on 27 April 2022).
- Bughio, H.R.; Odhano, I.A.; Asad, M.A.; Bughio, M.S. Improvem ent of grain yield in rice variety Basmati-370 (Oryza sativa L.), through mutagenesis. Pak. J. Bot 2007, 39, 2463–2466. [Google Scholar]
- Bhoi, A.; Yadu, B.; Chandra, J.; Keshavkant, S. Mutagenesis: A coherent technique to develop biotic stress resistant plants. Plant Stress 2022, 3, 100053. [Google Scholar] [CrossRef]
- Wani, M.R.; Kozgar, M.I.; Tomlekova, N.; Khan, S.; Kazi, A.G.; Sheikh, S.A.; Ahmad, P. Mutation Breeding: A Novel Technique for Genetic Improvement of Pulse Crops Particularly Chickpea (Cicer arietinum L.). In Improvement of Crops in the Era of Climatic Changes; Springer: New York, NY, USA, 2014; pp. 217–248. [Google Scholar]
- Lo, S.-F.; Fan, M.-J.; Hsing, Y.-I.; Chen, L.-J.; Chen, S.; Wen, I.-C.; Liu, Y.-L.; Chen, K.-T.; Jiang, M.-J.; Lin, M.-K.; et al. Genetic resources offer efficient tools for rice functional genomics research. Plant. Cell Environ. 2016, 39, 998–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, N.; Choudhary, S.; Naaz, N.; Sharma, N.; Laskar, R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Biotechnol. 2021, 19, 128. [Google Scholar] [CrossRef]
- Wani, S.H.; Choudhary, M.; Kumar, P.; Akram, N.A.; Surekha, C.; Ahmad, P.; Gosal, S.S. Marker-Assisted Breeding for Abiotic Stress Tolerance in Crop Plants. In Biotechnologies of Crop Improvement, Volume 3; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–23. [Google Scholar]
- Xu, Y.; Xie, C.; Wan, J.; He, Z.; Prasanna, B.M. Marker-Assisted Selection in Cereals: Platforms, Strategies and Examples. In Cereal Genomics II; Springer: Dordrecht, The Netherlands, 2013; pp. 375–411. [Google Scholar]
- Abdulmalik, R.O.; Menkir, A.; Meseka, S.K.; Unachukwu, N.; Ado, S.G.; Olarewaju, J.D.; Aba, D.A.; Hearne, S.; Crossa, J.; Gedil, M. Genetic Gains in Grain Yield of a Maize Population Improved through Marker Assisted Recurrent Selection under Stress and Non-stress Conditions in West Africa. Front. Plant Sci. 2017, 8, 841. [Google Scholar] [CrossRef] [Green Version]
- Bankole, F.; Menkir, A.; Olaoye, G.; Crossa, J.; Hearne, S.; Unachukwu, N.; Gedil, M. Genetic Gains in Yield and Yield Related Traits under Drought Stress and Favorable Environments in a Maize Population Improved Using Marker Assisted Recurrent Selection. Front. Plant Sci. 2017, 8, 808. [Google Scholar] [CrossRef] [Green Version]
- Oladosu, Y.; Rafii, M.Y.; Arolu, F.; Chukwu, S.C.; Muhammad, I.; Kareem, I.; Salisu, M.A.; Arolu, I.W. Submergence Tolerance in Rice: Review of Mechanism, Breeding and, Future Prospects. Sustainability 2020, 12, 1632. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, R.V.; Rudresh, N.S.; Shivamurthy, M.; Hittalmani, S. Performance and adoption of new aerobic rice variety MAS 946-1 (Sharada) in southern Karnataka. Karnataka J. Agric. Sci. 2012, 25, 5–8. [Google Scholar]
- Barik, S.R.; Pandit, E.; Mohanty, S.P.; Nayak, D.K.; Pradhan, S.K. Genetic mapping of physiological traits associated with terminal stage drought tolerance in rice. BMC Genet. 2020, 21, 76. [Google Scholar] [CrossRef]
- Shamsudin, N.A.A.; Swamy, B.P.M.; Ratnam, W.; Sta. Cruz, M.T.; Raman, A.; Kumar, A. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR. BMC Genet. 2016, 17, 30. [Google Scholar] [CrossRef] [Green Version]
- Mujtaba, S.M.; Faisal, S.; Khan, M.A.; Shirazi, M.U.; Khan, M.A. Evaluation of drought tolerant wheat genotypes using morpho-physiological indices as screening tools. Pakistan J. Bot. 2018, 50, 51–58. [Google Scholar]
- Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.; Oladosu, Y.; Okporie, E.; Onyishi, G.; Utobo, E.; Ekwu, L.; Swaray, S.; et al. Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.). Biotechnol. Biotechnol. Equip. 2019, 33, 440–455. [Google Scholar] [CrossRef] [Green Version]
- Anyaoha, C.O.; Fofana, M.; Gracen, V.; Tongoona, P.; Mande, S. Introgression of Two Drought QTLs into FUNAABOR-2 Early Generation Backcross Progenies Under Drought Stress at Reproductive Stage. Rice Sci. 2019, 26, 32–41. [Google Scholar] [CrossRef]
- Muthu, V.; Abbai, R.; Nallathambi, J.; Rahman, H.; Ramasamy, S.; Kambale, R.; Thulasinathan, T.; Ayyenar, B.; Muthurajan, R. Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PLoS ONE 2020, 15, e0227421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, S.; Mir, R.R.; Tyagi, S.; Balyan, H.S.; Gupta, P.K. Validation of QTL for grain weight using MAS-derived pairs of NILs in bread wheat (Triticum aestivum L.). J. Plant Biochem. Biotechnol. 2019, 28, 336–344. [Google Scholar] [CrossRef]
- Dixit, S.; Singh, A.; Sandhu, N.; Bhandari, A.; Vikram, P.; Kumar, A. Combining drought and submergence tolerance in rice: Marker-assisted breeding and QTL combination effects. Mol. Breed. 2017, 37, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Magaji, U.; Miah, G.; Hussin, G.; Ramli, A. Genotype × Environment interaction and stability analyses of yield and yield components of established and mutant rice genotypes tested in multiple locations in Malaysia. Acta Agric. Scand. 2017, 67, 590–606. [Google Scholar] [CrossRef]
- Cerrudo, D.; Cao, S.; Yuan, Y.; Martinez, C.; Suarez, E.A.; Babu, R.; Zhang, X.; Trachsel, S. Genomic Selection Outperforms Marker Assisted Selection for Grain Yield and Physiological Traits in a Maize Doubled Haploid Population Across Water Treatments. Front. Plant Sci. 2018, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Wani, S.H.; Choudhary, J.R.; Choudhary, M.; Rana, M.; Gosal, S.S. Recent Advances in Genomics Assisted Breeding for Drought Stress Tolerance in Major Cereals. J. Cereal Res. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Mwamahonje, A.; Eleblu, J.S.Y.; Ofori, K.; Deshpande, S.; Feyissa, T.; Tongoona, P. Drought Tolerance and Application of Marker-Assisted Selection in Sorghum. Biology 2021, 10, 1249. [Google Scholar] [CrossRef]
- Thapa, R.; Tabien, R.E.; Thomson, M.J.; Septiningsih, E.M. Genome-Wide Association Mapping to Identify Genetic Loci for Cold Tolerance and Cold Recovery During Germination in Rice. Front. Genet. 2020, 11, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suliman, S.; Alemu, A.; Abdelmula, A.A.; Badawi, G.H.; Al-Abdallat, A.; Tadesse, W. Genome-wide association analysis uncovers stable QTLs for yield and quality traits of spring bread wheat (Triticum aestivum) across contrasting environments. Plant Gene 2021, 25, 100269. [Google Scholar] [CrossRef]
- Shi, C.; Dong, N.; Guo, T.; Ye, W.; Shan, J.; Lin, H. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway. Plant J. 2020, 103, 1174–1188. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Chen, S.; Jiao, W.; Wang, L.; Wang, L.; Ye, W.; Lu, J.; Hong, D.; You, S.; Cheng, Z.; et al. Both maternally and paternally imprinted genes regulate seed development in rice. New Phytol. 2017, 216, 373–387. [Google Scholar] [CrossRef] [Green Version]
- Kelliher, T.; Starr, D.; Su, X.; Tang, G.; Chen, Z.; Carter, J.; Wittich, P.E.; Dong, S.; Green, J.; Burch, E.; et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 2019, 37, 287–292. [Google Scholar] [CrossRef]
- Bi, H.; Yang, B. Gene Editing with TALEN and CRISPR/Cas in Rice. Prog. Mol. Biol. Transl. Sci. 2017, 149, 81–98. [Google Scholar]
- Shen, L.; Wang, C.; Fu, Y.; Wang, J.; Liu, Q.; Zhang, X.; Yan, C.; Qian, Q.; Wang, K. QTL editing confers opposing yield performance in different rice varieties. J. Integr. Plant Biol. 2018, 60, 89–93. [Google Scholar] [CrossRef]
- Shen, C.; Que, Z.; Xia, Y.; Tang, N.; Li, D.; He, R.; Cao, M. Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J. Plant Biol. 2017, 60, 539–547. [Google Scholar] [CrossRef]
- Li, J.; Sun, Y.; Du, J.; Zhao, Y.; Xia, L. Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Mol. Plant 2017, 10, 526–529. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Alptekin, B.; Budak, H. CRISPR/Cas9 genome editing in wheat. Funct. Integr. Genomics 2018, 18, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Khahani, B.; Tavakol, E.; Shariati, V.; Fornara, F. Genome wide screening and comparative genome analysis for Meta-QTLs, ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genom. 2020, 21, 294. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.M.; Alvaro, F. Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci. Rep. 2019, 9, 10537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Q.; Liu, H.; Hong, Y.; Li, H.; Liu, H.; Li, X.; Wen, S.; Zhou, G.; Li, S.; Chen, X.; et al. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.). BMC Genom. 2018, 19, 887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Zenda, T.; Wang, X.; Liu, G.; Jin, H.; Yang, Y.; Dong, A.; Duan, H. Comprehensive Meta-Analysis of Maize QTLs Associated with Grain Yield, Flowering Date and Plant Height Under Drought Conditions. J. Agric. Sci. 2019, 11, 1–19. [Google Scholar] [CrossRef]
- Goffinet, B.; Gerber, S. Quantitative trait loci: A meta-analysis. Genetics 2000, 155, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Abdelraheem, A.; Liu, F.; Song, M.; Zhang, J.F. A meta-analysis of quantitative trait loci for abiotic and biotic stress resistance in tetraploid cotton. Mol. Genet. Genom. 2017, 292, 1221–1235. [Google Scholar] [CrossRef] [PubMed]
- Bilgrami, S.S.; Ramandi, H.D.; Shariati, V.; Razavi, K.; Tavakol, E.; Fakheri, B.A.; Nezhad, N.M.; Ghaderian, M. Detection of genomic regions associated with tiller number in Iranian bread wheat under different water regimes using genome-wide association study. Sci. Rep. 2020, 10, 14034. [Google Scholar] [CrossRef]
- Daware, A.V.; Srivastava, R.; Singh, A.K.; Parida, S.K.; Tyagi, A.K. Regional Association Analysis of MetaQTLs Delineates Candidate Grain Size Genes in Rice. Front. Plant Sci. 2017, 8, 807. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, N.; Pruthi, G.; Prakash Raigar, O.; Singh, M.P.; Phagna, K.; Kumar, A.; Sethi, M.; Singh, J.; Ade, P.A.; Saini, D.K. Meta-QTL Analysis in Rice and Cross-Genome Talk of the Genomic Regions Controlling Nitrogen Use Efficiency in Cereal Crops Revealing Phylogenetic Relationship. Front. Genet. 2021, 12, 2609. [Google Scholar] [CrossRef]
- Israel, H.; Richter, R.R. A Guide to Understanding Meta-Analysis WHY META-ANALYSIS. J. Orthop. Sport. Phys. Ther. 2011, 496, 496–504. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A.V.; Marti, K.M.; Roman, Y.M. Meta-Analysis. Chest 2020, 158, S97–S102. [Google Scholar] [CrossRef] [PubMed]
- Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. Genes 2019, 10, 771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, R.; Fritschi, F.B.; Zandalinas, S.I.; Mittler, R. The impact of stress combination on reproductive processes in crops. Plant Sci. 2021, 311, 111007. [Google Scholar] [CrossRef] [PubMed]
- Harris-Shultz, K.R.; Hayes, C.M.; Knoll, J.E. Mapping QTLs and identification of genes associated with drought resistance in sorghum. Methods Mol. Biol. 2019, 1931, 11–40. [Google Scholar] [PubMed]
- Nowicka, B.; Ciura, J.; Szymańska, R.; Kruk, J. Improving photosynthesis, plant productivity and abiotic stress tolerance-current trends and future perspectives. J. Plant Physiol. 2018, 231, 415–433. [Google Scholar] [CrossRef]
Abiotic Stress | Population | Trait | Type of Markers | QTL/Gene/Marker | Chromosome/Marker | Reference |
---|---|---|---|---|---|---|
Drought | N22 × Swarna N22 × IR64 N22/MTU100 | Grain yield | SSR | qDTY1.1 | 1 | [53] |
IR74371-46-1-1 × Sabitri | Grain yield | SSR | qDTY12.1 | 12 | [54] | |
MRQ74 and MR219 | Grain yield | SSR | qDTY12.1 | 12 | [56] | |
Vandana × Way Harem | Grain yield | SS | QTL2.1 | 12 | [55] | |
Sasanishika × Habataki | Flowering time | SSR | qDFT3 | 3 | [20] | |
qDFT8 | 8 | |||||
qDFT10.1 | 10 | |||||
qDFT11 | 11 | |||||
Spikelet fertility | SSR | qSFht2 | 2 | |||
qSFht4.2 | 4 | |||||
Pollen shedding | SSR | qPSLht1 | 1 | |||
qPSLht4.1 | 4 | |||||
qPSLht5 | 5 | |||||
qPSLht7 | 7 | |||||
qPSLht10.2 | 10 | |||||
13 parents | Grain yield | RFLP, SSR | qDTY1.1 | 1 | [52] | |
RFLP, SSR | qDTY2.2 | 2 | ||||
RFLP, SSR | qDTY2.3 | 2 | ||||
RFLP | qDTY3.1 | 3 | ||||
IR64 × Kinandang Patong | Rice deep rooting | SSR | DRO1 | 7 | [57] | |
Cocodrie × N22 | Grain number per panicle | SNP | qGN3.1 | 3 | [51] | |
SSR | qGN3.2 | 3 | ||||
SSR | qGN5.1 | 5 | ||||
Panicles per plant | SNP | qpn1.1 | 1 | |||
Grain yield | SNP | qGY1.1 | 1 | |||
SSR | qGY7.1 | 7 | ||||
SSR | qGY8.1 | 8 | ||||
SNP | qGY11.1 | 11 | ||||
Cold stress | Kuchum × Hitomebore | Seed fertility | SSR | qCT-4 | 4 | [62] |
Ukei 840 × Hitomebore | Seed fertility | - | qLTB3 | 3 | [63] | |
BR1 × Hbj.BVI | Cold tolerance seedling stage | SSR | qCTSL-8-1 | 8 | [29] | |
SSR | qCTSL-12-1 | 12 | ||||
SSR | qCTSS-8-1 | 8 | ||||
SSR | qCTCC-12-1 | 12 | ||||
Huanghuazhan | Cold tolerance booting stage | SNP | qCT-3-2 | 3 | [64] | |
Dongnong422 × Kongyu131 | Percent seed set | SSR | qPSST6 | 6 | [90] | |
Flooding stress | ID72 × Madabaru | Submergence tolerance | SSR | qSub1.1 | 1 | [70] |
SSR | qSub2.1 | 2 | ||||
SSR | qSub9.1 | 9 | ||||
SSR | qSub12.1 | 12 | ||||
IR40931-26 × PI543851FR13A | Dry weight | - | Sub1A | 9 | [71] | |
Salinity stress | Pokkali × IR29 | Na/K+ absorption rate | RFLP | Saltol | 1 | [72] |
IR36 × Weiguo | Relative shoot length | SNP | qRSL7 | 7 | [76] | |
Wujiaozhan × Nipponbare | Germination rate | - | qGR6.2 | 6 | [77] | |
IR26 × Jiucaiqing | Seed germination | SNP | qSE3 | 3 | [78] | |
Heavy metal stress | ‘Suwon490′ × ‘SNU-SG1′ | Shoot for Cd accumulation | - | scc10 | 10 | [82] |
Grain for Cd accumulation | - | gcc3 | 3 | |||
- | gcc9 | 9 | ||||
- | gcc11 | 11 | ||||
Xiang 743 × Katy | Cd concentration | SSR | qCd-2 | 2 | [85] | |
SSR | qCd-7 | 7 | ||||
Tainan1 (TN1) × Chunjiang06 | Cd concentration | - | CAL1 | 1 | [83] | |
Nipponbare × Anjana Dhan | Cd accumulation | SSR | RM8006 | 7 | [91] | |
Dhusura × Sebati | Fe toxicity tolerance | SSR | qFeTox4.3 | 4 | [92] | |
SSR | qFeTox6.1 | 6 | ||||
SSR | qFeTox10.1 | 10 | ||||
O. glaberrima × O. sativa | Fe concentration in leaf blade | SSR | RM5-RM246 | 1 | [87] | |
413 inbred accessions | Grain As concentration | SNP | qGAS1 | 1 | [93] | |
WTR1 × Hao-an-nong | As content in shoot | SNP | qAsS2 | 2 | [88] | |
As content in shoot | SNP | qAsS5.1 | 5 | |||
SNP | qAsS5.2 | 5 | ||||
SNP | qAsS6 | 6 | ||||
SNP | qAsS9.1 | 9 | ||||
SNP | qAsS9.2 | 9 | ||||
As content in root | SNP | qAsR8.1 | 8 | |||
SNP | qAsR8.2 | 8 | ||||
Chlorophyll content | SNP | qRChlo1 | 1 | |||
Yuefu × IRAT109 | Root length | SSR | qRRL-1 | 1 | [89] | |
SSR | qRRL-2 | 2 | ||||
SSR | qRRL-5 | 5 |
Abiotic Stress | Population | Trait | Type of Markers | QTL/Gene/ Marker | Chromosome/ Marker | Reference |
---|---|---|---|---|---|---|
Drought | Langhuang × TSI41 | Ear height to plant height ratio | RFLP | qEHPH-Ch.3-1 | 3 | [102] |
Grain weight | RFLP | qGW-Ch.1-2 | 1 | |||
RFLP | qGW-Ch.1-1 | 1 | ||||
RFLP | qGW-J1-1 | 1 | ||||
RFLP | qGW-Ch.4-1 | 4 | ||||
RFLP | qGW-Ch.8-1 | 8 | ||||
RFLP | qGW-J8-1 | 8 | ||||
Kernel ratio | RFLP | qKR-Ch.1-2 | 1 | |||
RFLP | qKR-J1-1 | 1 | ||||
H082183 × Lv28 | Ear weight | - | qEW1s | 1 | [103] | |
Hundred-kernel weight | - | qHKW7s | 7 | |||
DH1M × T877 | Crown root angle | SNP | CRA1 | 1 | [104] | |
SNP | CRL1 | 1 | ||||
DTPWC9F104 × LPSC7F64 | Senescence (6 weeks after flowering) | SNP | - | 2 | [105] | |
CML444 × MALAWI, CML440 × CML504, CML444 × CML441 | Stay green | SNP | - | 3 | [19] | |
Cold stress | Tohoku-PL3 × Akihikari | Spikelet fertility | RFLP | qCTR5 | 5 | [110] |
RFLP | qCTR12 | 12 | ||||
B73 × P39 B73 × IL14h | Vigor | SNP | - | 4 | [108] | |
Ear height | SNP | - | 8 | |||
B73 × Mo17 (IBM) | Germination rate | RFLP | qLTGR5-1 | 5 | [109] | |
Root length | RFLP | qLTPRL9-1 | 9 | |||
B73 × Mo17 (IBM) | Plumule length | - | qLTPL1-1 | 1 | [112] | |
Seedling length | - | qLTSL1-1 | 1 | |||
80 inbred lines W72 × W10 | Peroxidase activity at seedling stage | SNP | qPOD3 | 3 | [111] | |
Submergence stress | HZ32 × K12 | Plant height | SSR | ph1-1 | 1 | [114] |
SSR | ph1-3 | 1 | ||||
Shoot dry weight | SSR | sdw9-1 | 9 | |||
Total dry weight | SSR | tdw9-1 | 9 | |||
SSR | tdw9-2 | 9 | ||||
SSR | tdw9-3 | 9 | ||||
Root dry weight | SSR | rdw9-2 | 9 | |||
Mo18W × B73 | Submergence tolerance trait | - | Subtol6 | 6 | [115] | |
Salinity stress | PH6WC × PH4CV | Plant height | SNP | qSPH1 | 1 | [119] |
Xianyu335 (PH6WC × PH4CV) | Root length | SNP | qRLS1 | 1 | [120] | |
Shoot length | SNP | qSLS1-2 | 1 | |||
Full length | SNP | qFLS1-2 | 1 | |||
Root fresh weight | SNP | qRFS1 | 1 | |||
Full fresh weight | SNP | qFFS1 | 1 | |||
Root length | SNP | qRLR1 | 1 | |||
Zheng58 × Chang7-2 | Leaf Na+ and K+ contents | - | ZmNC1 | 3 | [121] | |
Heavy metal stress | Zong3/87-1 × Yuyu22 | Kernel As concentration | RFLP | XAsK1a | 1 | [122] |
IBMSyn10 DH | Leaf Cd accumulation | SNP | qLCd2 | 2 | [123] | |
B73 × Mo17 | Root fresh weight (Pb ad Cd tolerance coefficient) | - | qRFWLCTC2-1 | 1 | [124] | |
Shoot height (Pb and Cd tolerance coefficient) | - | qSHLLCTC2-2 | 2 |
Abiotic Stress | Population | Trait | Type of Markers | QTL/Gene/ Marker | Chromosome/Marker | Reference |
---|---|---|---|---|---|---|
Drought | Cranbrook × Halberd | Osmotic stress Spike | SNP | IWB72377 | 2A | [21] |
Stress tolerance trait | SNP | VRN-A1 | 5A | |||
Colosseo × Lloyd Meridiano × Claudio | Seminal root angle | SNP | QRga.ubo-2B | 2B | [133] | |
QRga.ubo-4B | 4B | |||||
QRga.ubo-6A | 6A | |||||
SYN-D (Croc 1/Aegilops squarrosa (224)//Opata) × Weebill 1 | Thousand-grain weight, grain number | SNP | QTGW-2A.1 | 2A | [24] | |
Yield | SNP | QYLD-3D.1 | 3D | |||
SNP | QYLD-6D.1 | 6D | ||||
SNP | QYLD-6D.2 | 6D | ||||
SNP | QYLD-7B.1 | 7B | ||||
Excalibur × Kukri | Yield | - | QYld.aww-1B.2 | 1B | [129] | |
Chinese Spring × SQ1 (Highbury × TW269/9/3/4) | Yield | SSR | Qyld.csdh.7AL | 7A | [130] | |
DBA Aurora × Fastoz8 | Seminal root angle | DArT | qSRA-6A | 6A | [132] | |
Reeder × Albany | Thousand-kernel weight | SNP | QTW.ndsu.7B | 7B | [134] | |
Yield | SNP | QYL.ndsu.2B | 2B | |||
SNP | QYL.ndsu.7B | 7B | ||||
Cold stress | Triticum spelta × Cheyenne | Frost resistance | RFLP | Fr1 | 5A | [136] |
Triticum spelta 5A × Cheyenne 5A | Frost resistance | - | FR2 | 5D | [138] | |
- | Frost resistance | RFLP | FR-2 | 5A | [137] | |
Norstar × Winter Manitau | Low-temperature tolerance | SNP | QLT50.usw-5A.1nm | 5A | [139] | |
QLT50.usw-5A.2nm | 5A | |||||
Capelle Desprez × Norstar | Low-temperature tolerance | SNP | QLT50.usw-5A.1nc | 5A | ||
Norstar × Winter Manitau | Low-temperature tolerance | SNP | QLT50.usw-5A.1 | 5A | ||
Submergence stress | W7984 × Opata85 | Germination rate index | SSR | Xfbb264 | 7A | [144] |
USG3209 × Jaypee | Chlorophyll content | - | QSpad3.ua-1D.5 | 1D | [145] | |
Salinity stress | Kharcia65 × HD2009 | Plant height | SSR | QSph.iiwbr-6A | 6A | [147] |
Date of flowering | SSR | QSdth.iiwbr-2D | 2D | |||
Line 149 × Tamaroi | Leaf blade low Na+ concentration | AFLP, RFLP | NAX1 | 2A | [148] | |
WTSD91 × WN-64 | Na+ exclusion | SNP | qSNAX.2A.1 | 2A | [149] | |
SNP | qSNAX.2A.2 | 2A | ||||
SNP | qSNAX.7A.3 | 7A | ||||
SNP | qRNAX.7A.3 | 7A | ||||
Heavy metal stress | Grenora × Haurani | Grain Cd content | SNP | IWA1775 | 5B | [152] |
D041735 × Divide | Cd absorption | SNP | QCdu.ndsu-5B | 5B | [153] | |
UI Platinum × LCS Star | Cd content in grain | SNP | QCd.uia2-5B | 5B | [154] | |
SNP | QCd.uia2-7B | 7B | ||||
SNP | QCd.uia2-7D | 7D | ||||
Chinese spring × ‘Synthetic 6x’ | Al tolerance | SSR | Xgdm125-Xgwm976 | 4D | [155] | |
SSR | Qalt cs.ipk-3B | 3B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raj, S.R.G.; Nadarajah, K. QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals. Int. J. Mol. Sci. 2023, 24, 6. https://doi.org/10.3390/ijms24010006
Raj SRG, Nadarajah K. QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals. International Journal of Molecular Sciences. 2023; 24(1):6. https://doi.org/10.3390/ijms24010006
Chicago/Turabian StyleRaj, Sujitra Raj Genga, and Kalaivani Nadarajah. 2023. "QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals" International Journal of Molecular Sciences 24, no. 1: 6. https://doi.org/10.3390/ijms24010006