Effects of Pituitary Adenylate Cyclase Activating Polypeptide on Cell Death
Abstract
:1. Introduction
2. Types of Cell Death
3. Effects of PACAP on Cell Death in the Central Nervous System
3.1. Cerebellum
3.2. Cerebrum
3.3. Spinal Cord
4. Effects of PACAP on Cell Death in the Peripheral Nervous System
PC12 Cells
5. Effects of PACAP on Cell Death in the Sensory Organs
5.1. Eye
5.1.1. Retina
5.1.2. Cornea
5.2. Inner Ear
5.3. Olfactory System
6. Effects of PACAP on Cell Death in Peripheral Organs
6.1. Cardiovascular System
6.2. Immune System
6.3. Respiratory System
6.4. Gastrointestinal Tract
6.4.1. Intestines
6.4.2. Liver
6.4.3. Pancreas
6.5. Urinary System
6.6. Reproductive System
6.7. Glands
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Miyata, A.; Arimura, A.; Dahl, R.R.; Minamino, N.; Uehara, A.; Jiang, L.; Culler, M.D.; Coy, D.H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 1989, 164, 567–574. [Google Scholar] [CrossRef]
- Vaudry, D.; Falluel-Morel, A.; Bourgault, S.; Basille, M.; Burel, D.; Wurtz, O.; Fournier, A.; Chow, B.K.C.; Hashimoto, H.; Galas, L.; et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 2009, 61, 283–357. [Google Scholar] [CrossRef] [PubMed]
- Robberecht, P.; Gourlet, P.; De Neef, P.; Woussen-Colle, M.C.; Vandermeers-Piret, M.C.; Vandermeers, A.; Christophe, J. Structural requirements for the occupancy of pituitary adenylate cyclase-activating peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6–38) as a potent antagonist. Eur. J. Biochem. 1992, 207, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Laburthe, M.; Couvineau, A.; Tan, V. Class II G protein-coupled receptors for VIP and PACAP: Structure, models of activation and pharmacology. Peptides 2007, 28, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Langer, I.; Jeandriens, J.; Couvineau, A.; Sanmukh, S.; Latek, D. Signal transduction by VIP and PACAP receptors. Biomedicines 2022, 10, 406. [Google Scholar] [CrossRef] [PubMed]
- Dickson, L.; Finlayson, K. VPAC and PAC receptors: From ligands to function. Pharmacol. Ther. 2009, 121, 294–316. [Google Scholar] [CrossRef] [PubMed]
- Blechman, J.; Levkowitz, G. Alternative splicing of the pituitary adenylate cyclase-activating polypeptide receptor PAC1: Mechanisms of fine tuning of brain activity. Front. Endocrinol. 2013, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Somogyvari-Vigh, A.; Reglodi, D. Pituitary adenylate cyclase activating polypeptide: A potential neuroprotective peptide. Curr. Pharm. Des. 2004, 10, 2861–2889. [Google Scholar] [CrossRef]
- Reglodi, D.; Tamas, A.; Jungling, A.; Vaczy, A.; Rivnyak, A.; Fulop, B.D.; Szabo, E.; Lubics, A.; Atlasz, T. Protective effects of pituitary adenylate cyclase activating polypeptide against neurotoxic agents. Neurotoxicology 2018, 66, 185–194. [Google Scholar] [CrossRef]
- Reglodi, D.; Kiss, P.; Lubics, A.; Tamas, A. Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr. Pharm. Des. 2011, 17, 962–972. [Google Scholar] [CrossRef]
- Toth, D.; Szabo, E.; Tamas, A.; Juhasz, T.; Horvath, G.; Fabian, E.; Opper, B.; Szabo, D.; Maugeri, G.; D’Amico, A.G.; et al. Protective effects of PACAP in peripheral organs. Front. Endocrinol. 2020, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Seo, S.R. Neuroprotective roles of pituitary adenylate cyclase activating polypeptide in neurodegenerative diseases. BMB Rep. 2014, 47, 369–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirger, Z.; Nemeth, J.; Hiripi, L.; Toth, G.; Kiss, P.; Lubics, A.; Tamas, A.; Hernadi, L.; Kiss, T.; Reglodi, D. PACAP has anti-apoptotic effect in the salivary gland of an invertebrate species, Helix pomatia. J. Mol. Neurosci. 2008, 36, 105–114. [Google Scholar] [CrossRef] [PubMed]
- D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Djajadikerta, A.; Keshri, S.; Pavel, M.; Prestil, R.; Rubinsztein, D.C. Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J. Mol. Biol. 2020, 432, 2799–2821. [Google Scholar] [CrossRef]
- Majno, G.; Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 1995, 146, 3–15. [Google Scholar]
- Lamine-Ajili, A.; Fahmy, A.M.; Létourneau, M.; Chatenet, D.; Labonté, P.; Vaudry, D.; Fournier, A. Effect of the pituitary adenylate cyclase-activating polypeptide on the autophagic activation observed in in vitro and in vivo models of Parkinson’s disease. Biochim. Biophys. Acta 2016, 1862, 688–695. [Google Scholar] [CrossRef]
- Kienlen Campard, P.; Crochemore, C.; Rene, F.; Monnier, D.; Koch, B.; Loeffler, J.P. PACAP type I receptor activation promotes cerebellar neuron survival through the cAMP/PKA signaling pathway. DNA Cell Biol. 1997, 16, 323–333. [Google Scholar] [CrossRef]
- Canonico, P.L.; Copani, A.; D’Agata, V.; Musco, S.; Petralia, S.; Travali, S.; Stivala, F.; Cavallaro, S. Activation of pituitary adenylate cyclase-activating polypeptide receptors prevents apoptotic cell death in cultured cerebellar granule cells. Ann. N. Y. Acad. Sci. 1996, 805, 470–472. [Google Scholar] [CrossRef]
- Bhave, S.V.; Hoffmann, P.L. Phosphatidylinositol 3′-OH kinase and protein kinase A pathways mediate the anti-apoptotic effect of pituitary adenylate cyclase activating polypeptide in cultured cerebellar granule neurons: Modulation by ethanol. J. Neurochem. 2004, 88, 359–369. [Google Scholar] [CrossRef]
- Vaudry, D.; Rousselle, C.; Basille, M.; Falluel-Morel, A.; Pamantung, T.F.; Fontaine, M.; Fournier, A.; Vaudry, H.; Gonzalez, B.J. Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proc. Natl. Acad. Sci. USA 2002, 99, 6398–6403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.Y.; Korolev, V.V.; Wang, Z. Cyclic AMP and pituitary adenylate cyclase-activating polypeptide (PACAP) prevent programmed cell death of cultured rat cerebellar granule cells. Neurosci. Lett. 1996, 206, 181–184. [Google Scholar] [CrossRef]
- Gonzalez, B.J.; Basille, M.; Vaudry, D.; Fournier, A.; Vaudry, H. Pituitary adenylate cyclase activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience 1997, 78, 419–430. [Google Scholar] [CrossRef]
- Villalba, M.; Bockaert, J.; Journot, L. Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J. Neurosci. 1997, 17, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Journot, L.; Villalba, M.; Bockaert, J. PACAP-38 protects cerebellar granule cells from apoptosis. Ann. N. Y. Acad. Sci. 1998, 865, 100–110. [Google Scholar] [CrossRef]
- Ito, Y.; Arakawa, M.; Ishige, K.; Fukuda, H. Comparative study of survival signal withdrawal- and 4-hydroxynonenal-induced cell death in cerebellar granule cells. Neurosci. Res. 1999, 35, 321–327. [Google Scholar] [CrossRef]
- Vaudry, D.; Falluel-Morel, A.; Basille, M.; Pamantung, T.F.; Fontaine, M.; Fournier, A.; Vaudry, H.; Gonzalez, B.J. Pituitary adenylate cyclase-activating polypeptide prevents C2-ceramide-induced apoptosis of cerebellar granule cells. J. Neurosci. Res. 2003, 72, 303–316. [Google Scholar] [CrossRef]
- Falluel-Morel, A.; Aubert, N.; Vaudry, D.; Basille, M.; Fontaine, M.; Fournier, A.; Vaudry, H.; Gonzalez, B.J. Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. J. Neurochem. 2004, 91, 1231–1243. [Google Scholar] [CrossRef]
- Vaudry, D.; Gonzalez, B.J.; Basille, M.; Pamantung, T.F.; Fontaine, M.; Fournier, A.; Vaudry, H. The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc. Natl. Acad. Sci. USA 2000, 97, 13390–13395. [Google Scholar] [CrossRef] [Green Version]
- Vaudry, D.; Pamantung, T.F.; Basille, M.; Rousselle, C.; Fournier, A.; Vaudry, H.; Beauvillain, J.C.; Gonzalez, B.J. PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur. J. Neurosci. 2002, 15, 1451–1460. [Google Scholar] [CrossRef] [Green Version]
- Vaudry, D.; Basille, M.; Anouar, Y.; Fournier, A.; Vaudry, H.; Gonzalez, B.J. The neurotrophic activity of PACAP on rat cerebellar granule cells is associated with activation of the protein kinase A pathway and c-fos gene expression. Ann. N. Y. Acad. Sci. 1998, 865, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Vaudry, D.; Cottet-Rousselle, C.; Basille, M.; Falluel-Morel, A.; Fournier, A.; Vaudry, H.; Gonzalez, B.J. Pituitary adenylate cyclase-activating polypeptide inhibits caspase-3 activity but does not protect cerebellar granule neurons against beta-amyloid (25-35)-induced apoptosis. Regul. Pept. 2004, 123, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, E.M.; Huitema, A.D.; Boogerd, W.; Beijnen, J.H.; Schellens, J.H. Persistent neuropathy after treatment with cisplatin and oxaliplatin. Acta Oncol. 2009, 48, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Aubert, N.; Vaudry, D.; Falluel-Morel, A.; Desfeux, A.; Fisch, C.; Ancian, P.; de Jouffrey, S.; Le Bigot, J.F.; Couvineau, A.; Laburthe, M.; et al. PACAP prevents toxicity induced by cisplatin in rat and primate neurons but not in proliferating ovary cells: Involvement of the mitochondrial apoptotic pathway. Neurobiol. Dis. 2008, 32, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Tabuchi, A.; Koizumi, M.; Nakatsubo, J.; Yaguchi, T.; Tsuda, M. Involvement of endogenous PACAP expression in the activity dependent survival of mouse cerebellar granule cells. Neurosci. Res. 2001, 39, 85–93. [Google Scholar] [CrossRef]
- Vaudry, D.; Hamelink, C.; Damadzic, R.; Eskay, R.L.; Gonzalez, B.; Eidena, L.E. Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. Peptides 2005, 26, 2518–2524. [Google Scholar] [CrossRef] [Green Version]
- Morio, H.; Tatsuno, I.; Tanaka, T.; Uchida, D.; Hirai, A.; Tamura, Y.; Saito, Y. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neurotrophic factor for cultured rat cortical neurons. Ann. N. Y. Acad. Sci. 1996, 805, 476–481. [Google Scholar] [CrossRef]
- Morio, H.; Tatsuno, I.; Hirai, A.; Tamura, Y.; Saito, Y. Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Res. 1996, 741, 82–88. [Google Scholar] [CrossRef]
- Shintani, N.; Suetake, S.; Hashimoto, H.; Koga, K.; Kasai, A.; Kawaguchi, C.; Morita, Y.; Hirose, M.; Sakai, Y.; Tomimoto, S.; et al. Neuroprotective action of endogenous PACAP in cultured rat cortical neurons. Regul. Pept. 2005, 126, 123–128. [Google Scholar] [CrossRef]
- Frechilla, D.; García-Osta, A.; Palacios, S.; Cenarruzabeitia, E.; Del Rio, J. BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. Neuroreport 2001, 12, 919–923. [Google Scholar] [CrossRef]
- Skoglösa, Y.; Lewén, A.; Takei, N.; Hillered, L.; Lindholm, D. Regulation of pituitary adenylate cyclase activating polypeptide and its receptor type 1 after traumatic brain injury: Comparison with brain-derived neurotrophic factor and the induction of neuronal cell death. Neuroscience 1999, 90, 235–247. [Google Scholar] [CrossRef]
- Rozzi, S.R.; Borelli, G.; Ryan, K.; Steiner, J.P.; Reglodi, D.; Mocchetti, I.; Avdoshina, V. PACAP27 is protective against tat-induced neurotoxicity. J. Mol. Neurosci. 2014, 54, 485–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, Y.; Tuazon, J.P.; Ji, X.; Borlongan, C.V. Pituitary adenylate cyclase activating polypeptide elicits neuroprotection against acute ischemic neuronal cell death associated with NMDA receptors. Cell. Physiol. Biochem. 2018, 51, 1982–1995. [Google Scholar] [CrossRef]
- Sanchez, A.; Internati, M.C.; Grammas, P. Transduction of PACAP38 protects primary cortical neurons from neurotoxic injury. Neurosci. Lett. 2008, 448, 52–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, A.; Rao, H.V.; Grammas, P. PACAP38 protects rat cortical neurons against the neurotoxicity evoked by sodium nitroprusside and thrombin. Regul. Pept. 2009, 152, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Masmoudi-Kouki, O.; Douiri, S.; Hamdi, Y.; Kaddour, H.; Bahdoudi, S.; Vaudry, D.; Basille, M.; Leprince, J.; Fournier, A.; Vaudry, H.; et al. Pituitary adenylate cyclase-activating polypeptide protects astroglial cellsagainst oxidative stress-induced apoptosis. J. Neurochem. 2011, 117, 403–411. [Google Scholar] [CrossRef]
- Wilhelm, I.; Fazakas, C.; Tamás, A.; Tóth, G.; Reglődi, D.; Krizbai, I.A. PACAP enhances barrier properties of cerebral microvessels. J. Mol. Neurosci. 2014, 54, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Yang, J.; Yang, Z.; Chen, P.; Fraser, A.; Zhang, W.; Pang, H.; Gao, X.; Wilson, B.; Hong, J.S.; et al. Pituitary adenylate cyclaseactivating polypeptide (PACAP) 38 and PACAP4-6 are neuroprotective through inhibition of NADPH oxidase: Potent regulators of microglia-mediated oxidative stress. J. Pharmacol. Exp. Ther. 2006, 319, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.Y.; Maderdrut, J.L.; Jeohn, G.H.; Hong, J.S. Reduction of lipopolysaccharide-induced neurotoxicity in mixed cortical neuron/glia cultures by femtomolar concentrations of pituitary adenylate cyclase-activating polypeptide. Neuroscience 1999, 91, 493–500. [Google Scholar] [CrossRef]
- Takei, N.; Skoglösa, Y.; Lindholm, D. Neurotrophic and neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on mesencephalic dopaminergic neurons. J. Neurosci. Res. 1998, 54, 698–706. [Google Scholar] [CrossRef]
- Manavalan, S.; Getachew, B.; Manaye, K.F.; Khundmiri, S.J.; Csoka, A.B.; McKinley, R.; Tamas, A.; Reglodi, D.; Tizabi, Y. PACAP protects against ethanol and nicotine toxicity in SH-SY5Y cells: Implications for drinking-smoking co-morbidity. Neurotox. Res. 2017, 32, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.; Tamas, A.; Reglodi, D.; Tizabi, Y. PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: Implication for Parkinson’s disease. J. Mol. Neurosci. 2013, 50, 600–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.; Tamas, A.; Reglodi, D.; Tizabi, Y. PACAP protects against inflammatory-mediated toxicity in dopaminergic SH-SY5Y cells: Implication for Parkinson’s disease. Neurotox. Res. 2014, 26, 230–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansouri, S.; Lietzau, G.; Lundberg, M.; Nathanson, D.; Nyström, T.; Patrone, C. Pituitary adenlylate cyclase activating peptide protects adult neural stem cells from a hypoglycaemic milieu. PLoS ONE 2016, 11, e0156867. [Google Scholar] [CrossRef]
- Mansouri, S.; Ortsäter, H.; Gallego, O.P.; Darsalia, V.; Sjöholm, A.; Patrone, C. Pituitary adenylate cyclase-activating polypeptide counteracts the impaired adult neural stem cell viability induced by palmitate. J. Neurosci. Res. 2012, 90, 759–768. [Google Scholar] [CrossRef]
- Mansouri, S.; Agartz, I.; Ögren, S.O.; Patrone, C.; Lundberg, M. PACAP protects adult neural stem cells from the neurotoxic effect of ketamine associated with decreased apoptosis, ER stress and mTOR pathway activation. PLoS ONE 2017, 12, e0170496. [Google Scholar] [CrossRef]
- Arimura, A.; Somogyvari-Vigh, A.; Weill, C.; Fiore, R.C.; Tatsuno, I.; Bay, V.; Brenneman, D.E. PACAP functions as a neu- rotrophic factor. Ann. N. Y. Acad. Sci. 1994, 739, 228–243. [Google Scholar] [CrossRef]
- Solés-Tarrés, I.; Cabezas-Llobet, N.; Lefranc, B.; Leprince, J.; Alberch, J.; Vaudry, D.; Xifró, X. Pituitary adenylate cyclase-activating polypeptide (PACAP) protects striatal cells and improves motor function in Huntington’s disease models: Role of PAC1 receptor. Front. Pharmacol. 2022, 12, 797541. [Google Scholar] [CrossRef]
- Broome, S.T.; Musumeci, G.; Castorina, A. PACAP and VIP mitigate rotenone-induced inflammation in BV-2 microglial cells. J. Mol. Neurosci. 2022, in press. [Google Scholar] [CrossRef]
- Tomimatsu, N.; Arakawa, Y. Survival-promoting activity of pituitary adenylate cyclase-activating polypeptide in the presence of phosphodiesterase inhibitors on rat motoneurons in culture: cAMP-protein kinase A-mediated survival. J. Neurochem. 2008, 107, 628–635. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.D.; Rasà, D.M.; Federico, C.; Saccone, S.; Morello, G.; La Cognata, V.; Cavallaro, S.; D’Agata, V. Molecular mechanisms involved in the protective effect of pituitary adenylate cyclase-activating polypeptide in an in vitro model of amyotrophic lateral sclerosis. J. Cell. Physiol. 2019, 234, 5203–5214. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.G.; Maugeri, G.; Saccone, S.; Federico, C.; Cavallaro, S.; Reglodi, D.; D’Agata, V. PACAP modulates the autophagy process in an in vitro model of amyotrophic lateral sclerosis. Int. J. Mol. Sci. 2020, 21, 2943. [Google Scholar] [CrossRef] [PubMed]
- Li, H.X.; Feng, J.; Liu, Q.; Ou, B.Q.; Lu, S.Y.; Ma, Y. PACAP-derived mutant peptide MPAPO protects trigeminal ganglion cell and the retina from hypoxic injury through anti-oxidative stress, anti-apoptosis, and promoting axon regeneration. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 130018. [Google Scholar] [CrossRef] [PubMed]
- Castorina, A.; Tiralongo, A.; Giunta, S.; Carnazza, M.L.; Rasi, G.; D’Agata, V. PACAP and VIP prevent apoptosis in schwannoma cells. Brain Res. 2008, 1241, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Onoue, S.; Ohshima, K.; Endo, K.; Yajima, T.; Kashimoto, K. PACAP protects neuronal PC12 cells from the cytotoxicity of human prion protein fragment 106–126. FEBS Lett. 2002, 522, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Onoue, S.; Endo, K.; Ohshima, K.; Yajima, T.; Kashimoto, K. The neuropeptide PACAP attenuates beta-amyloid (1-42)-induced toxicity in PC12 cells. Peptides 2002, 23, 1471–1478. [Google Scholar] [CrossRef]
- Wang, G.; Qi, C.; Fan, G.H.; Zhou, H.Y.; Chen, S.D. PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett. 2005, 579, 4005–4011. [Google Scholar] [CrossRef] [Green Version]
- Reglodi, D.; Fabian, Z.; Tamas, A.; Lubics, A.; Szeberenyi, J.; Alexy, T.; Toth, K.; Marton, Z.; Borsiczky, B.; Roth, E.; et al. Effects of PACAP on in vitro and in vivo neuronal cell death, platelet aggregation, and production of reactive oxygen radicals. Regul. Pept. 2004, 123, 51–59. [Google Scholar] [CrossRef]
- Dejda, A.; Chan, P.; Seaborn, T.; Coquet, L.; Jouenne, T.; Fournier, A.; Vaudry, H.; Vaudry, D. Involvement of stathmin 1 in the neurotrophic effects of PACAP in PC12 cells. J. Neurochem. 2010, 114, 1498–1510. [Google Scholar] [CrossRef]
- Chung, C.Y.; Seo, H.; Sonntag, K.C.; Brooks, A.; Lin, L.; Isacson, O. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum. Mol. Genet. 2005, 14, 1709–1725. [Google Scholar] [CrossRef] [Green Version]
- Deguil, J.; Jailloux, D.; Page, G.; Fauconneau, B.; Houeto, J.L.; Philippe, M.; Muller, J.M.; Pain, S. Neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) in MPP+-induced alteration of translational control in Neuro-2a neuroblastoma cells. J. Neurosci. Res. 2007, 85, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Mester, L.; Kovacs, K.; Racz, B.; Solti, I.; Atlasz, T.; Szabadfi, K.; Tamas, A.; Reglodi, D. Pituitary adenylate cyclase-activating polypeptide is protective against oxidative stress in human retinal pigment epithelial cells. J. Mol. Neurosci. 2011, 43, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Fabian, E.; Reglodi, D.; Mester, L.; Szabo, A.; Szabadfi, K.; Tamas, A.; Toth, G.; Kovacs, K. Effects of PACAP on intracellular signaling pathways in human retinal pigment epithelial cells exposed to oxidative stress. J. Mol. Neurosci. 2012, 48, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, G.; D’Amico, A.G.; Gagliano, C.; Saccone, S.; Federico, C.; Cavallaro, S.; D’Agata, V. VIP family members prevent outer blood retinal barrier damage in a model of diabetic macular edema. J. Cell. Physiol. 2017, 232, 1079–1085. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.G.; Saccone, S.; Federico, C.; Cavallaro, S.; D’Agata, V. PACAP and VIP inhibit HIF-1α-mediated VEGF expression in a model of diabetic macular edema. J. Cell. Physiol. 2017, 232, 1209–1215. [Google Scholar] [CrossRef]
- Ding, Y.; Cheng, H.; Yu, R.; Tang, C.; Liu, X.; Chen, J. Effects of cyclopeptide C*HSDGIC* from the cyclization of PACAP (1-5) on the proliferation and UVB-induced apoptosis of the retinal ganglion cell line RGC-5. Peptides 2012, 36, 280–285. [Google Scholar] [CrossRef]
- Yu, R.; Wang, J.; Li, J.; Wang, Y.; Zhang, H.; Chen, J.; Huang, L.; Liu, X. A novel cyclopeptide from the cyclization of PACAP(1-5) with potent activity towards PAC1 attenuates STZ-induced diabetes. Peptides 2010, 31, 1062–1067. [Google Scholar] [CrossRef]
- Cheng, H.; Ding, Y.; Yu, R.; Chen, J.; Wu, C. Neuroprotection of a novel cyclopeptide C*HSDGIC* from the cyclization of PACAP (1-5) in cellular and rodent models of retinal ganglion cell apoptosis. PLoS ONE 2014, 9, e108090. [Google Scholar] [CrossRef]
- Cheng, H.; Ye, H.; Peng, R.P.; Deng, J.; Ding, Y. Inhibition of retinal ganglion cell apoptosis: Regulation of mitochondrial function by PACAP. Neural. Regen. Res. 2018, 13, 923–929. [Google Scholar] [CrossRef]
- Silveira, M.S.; Costa, M.R.; Bozza, M.; Linden, R. Pituitary adenylyl cyclase-activating polypeptide prevents induced cell death in retinal tissue through activation of cyclic AMP-dependent protein kinase. J. Biol. Chem. 2002, 277, 16075–16080. [Google Scholar] [CrossRef] [Green Version]
- Maugeri, G.; Longo, A.; D’Amico, A.G.; Rasà, D.M.; Reibaldi, M.; Russo, A.; Bonfiglio, V.; Avitabile, T.; D’Agata, V. Trophic effect of PACAP on human corneal endothelium. Peptides 2018, 99, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, G.; D’Amico, A.G.; Amenta, A.; Saccone, S.; Federico, C.; Reibaldi, M.; Russo, A.; Bonfiglio, V.; Avitabile, T.; Longo, A.; et al. Protective effect of PACAP against ultraviolet B radiation-induced human corneal endothelial cell injury. Neuropeptides 2020, 79, 101978. [Google Scholar] [CrossRef] [PubMed]
- Racz, B.; Horvath, G.; Reglodi, D.; Gasz, B.; Kiss, P.; Gallyas, F., Jr.; Sumegi, B.; Toth, G.; Nemeth, A.; Lubics, A.; et al. PACAP ameliorates oxidative stress in the chicken inner ear: An in vitro study. Regul. Pept. 2010, 160, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Kanekar, S.; Gandham, M.; Lucero, M.T. PACAP protects against TNFα-induced cell death in olfactory epithelium and olfactory placodal cell lines. Mol. Cell. Neurosci. 2010, 45, 345–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabo, D.; Sarszegi, Z.; Polgar, B.; Saghy, E.; Nemeth, A.; Reglodi, D.; Makkos, A.; Gorbe, A.; Helyes, Z.; Ferdinandy, P.; et al. PACAP-38 in acute ST-segment elevation myocardial infarction in humans and pigs: A translational study. Int. J. Mol. Sci. 2021, 22, 2883. [Google Scholar] [CrossRef]
- Racz, B.; Gasz, B.; Borsiczky, B.; Gallyas, F.; Tamas, A.; Jozsa, R.; Lubics, A.; Kiss, P.; Roth, E.; Ferencz, A.; et al. Protective effects of pituitary adenylate cyclase activating polypeptide in endothelial cells against oxidative stress-induced apoptosis. Gen. Comp. Endocrinol. 2007, 153, 115–123. [Google Scholar] [CrossRef]
- Bian, N.; Du, G.; Ip, M.F.; Ding, J.; Chang, Q.; Li, Z. Pituitary adenylate cyclase-activating polypeptide attenuates tumor necrosis factor-α-induced apoptosis in endothelial colony-forming cells. Biomed. Rep. 2017, 7, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Gasz, B.; Racz, B.; Roth, E.; Borsiczky, B.; Ferencz, A.; Tamas, A.; Cserepes, B.; Lubics, A.; Gallyas, F., Jr.; Toth, G.; et al. Pituitary adenylate cyclase activating polypeptide protects cardiomyocytes against oxidative stress-induced apoptosis. Peptides 2006, 27, 87–94. [Google Scholar] [CrossRef]
- Gasz, B.; Racz, B.; Roth, E.; Borsiczky, B.; Tamas, A.; Boronkai, A.; Gallyas, F., Jr.; Toth, G.; Reglodi, D. PACAP inhibits oxidative stress-induced activation of MAP kinase-dependent apoptotic pathway in cultured cardiomyocytes. Ann. N. Y. Acad. Sci. 2006, 1070, 293–297. [Google Scholar] [CrossRef]
- Racz, B.; Gasz, B.; Gallyas, F.; Kiss, P.; Tamas, A.; Szanto, Z.; Lubics, A.; Lengvari, I.; Toth, G.; Hegyi, O.; et al. PKA-Bad-14-3-3 and Akt-Bad-14-3-3 signaling pathways are involved in the protective effects of PACAP against ischemia/reperfusion-induced cardiomyocyte apoptosis. Regul. Pept. 2008, 145, 105–115. [Google Scholar] [CrossRef]
- Roth, E.; Weber, G.; Kiss, P.; Horvath, G.; Toth, G.; Gasz, B.; Ferencz, A.; Gallyas, F., Jr.; Reglodi, D.; Racz, B. Effects of PACAP and preconditioning against ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro. Ann. N. Y. Acad. Sci. 2009, 1163, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cao, L.; Yi, P.Q.; Xu, C.; Su, J.; Chen, P.Z.; Li, M.; Chen, J.Y. Pituitary adenylate cyclase-activating polypeptide ameliorates radiation-induced cardiac injury. Am. J. Transl. Res. 2019, 11, 6585–6599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, M.; Ganea, D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit antigen-induced apoptosis of mature T lymphocytes by inhibiting Fas ligand expression. J. Immunol. 2000, 164, 1200–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, M.; Garrido, E.; Martinez, C.; Leceta, L.; Gomariz, R.P. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptides (PACAP27) and PACAP38) protect CD4+CD8+ thymocytes from glucocorticoid-induced apoptosis. Blood 1996, 87, 5152–5161. [Google Scholar] [CrossRef]
- Onoue, S.; Endo, K.; Ohmori, Y.; Yamada, S.; Kimura, R.; Yajima, T.; Kashimoto, K. Long-acting analogue of vasoactive intestinal peptide, [R15, 20, 21, L17]-VIP-GRR (IK312532), protects rat alveolar L2 cells from the cytotoxicity of cigarette smoke. Regul. Pept. 2004, 123, 193–199. [Google Scholar] [CrossRef]
- Onoue, S.; Ohmori, Y.; Endo, K.; Yamada, S.; Kimura, R.; Yajima, T. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide attenuate the cigarette smoke extract-induced apoptotic death of rat alveolar L2 cells. Eur. J. Biochem. 2004, 271, 1757–1767. [Google Scholar] [CrossRef]
- Fujimiya, M.; Inui, A. Peptidergic regulation of gastrointestinal motility in rodents. Peptides 2000, 20, 1565–1582. [Google Scholar] [CrossRef]
- Al-Qudah, M.; Alkahtani, R.; Akbarali, H.I.; Murthy, K.S.; Grider, J.R. Stimulation of synthesis and release of brain-derived neurotropic factor from intestinal smooth muscle cells by substance P and pituitary adenylate cyclase-activating peptide. Neurogastroenterol. Motil. 2015, 27, 1162–1174. [Google Scholar] [CrossRef] [Green Version]
- Illes, A.; Opper, B.; Reglodi, D.; Kerenyi, M.; Czetany, P.; Boronkai, A.; Schafer, E.; Toth, G.; Fabian, E.; Horvath, G. Effects of pituitary adenylate cyclase activating polypeptide on small intestinal INT 407 cells. Neuropeptides 2017, 65, 106–113. [Google Scholar] [CrossRef]
- Le, S.V.; Yamaguchi, D.J.; McArdle, C.A.; Tachiki, K.; Pisegna, J.R.; Germano, P. PAC1 and PACAP expression, signaling, and effect on the growth of HCT8, human colonic tumor cells. Regul. Pept. 2002, 109, 115–125. [Google Scholar] [CrossRef]
- Ji, H.; Zhang, Y.; Shen, X.; Gao, F.; Huang, C.Y.; Abad, C.; Busuttil, R.W.; Waschek, J.A.; Kupiec-Weglinski, J.W. Neuropeptide PACAP in mouse liver ischemia and reperfusion injury: Immunomodulation by the cAMP-PKA pathway. Hepatology 2013, 57, 1225–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvath, G.; Brubel, R.; Kovacs, K.; Reglodi, D.; Opper, B.; Ferencz, A.; Szakaly, P.; Laszlo, E.; Hau, L.; Kiss, P.; et al. Effects of PACAP on oxidative stress-induced cell death in rat kidney and human hepatocyte cells. J. Mol. Neurosci. 2011, 43, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.P.; Harmon, J.S. Diabetes, glucosetoxicity, and oxidative stress: A case of double jeopardyfor the pancreatic islet beta cell. Free Radic. Biol. Med. 2006, 41, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Onoue, S.; Hanato, J.; Yamada, S. Pituitary adenylate cyclase-activating polypeptide attenuates streptozotocin-induced apoptotic death of RIN-m5F cells through regulation of Bcl-2 family protein mRNA expression. FEBS J. 2008, 275, 5542–5551. [Google Scholar] [CrossRef]
- Han, B.; Wu, J. DcR3 protects islet β cells from apoptosis through modulating Adcyap1 and bank1 expression. J. Immunol. 2009, 183, 8157–8166. [Google Scholar] [CrossRef] [Green Version]
- Tsonkova, V.G.; Sand, F.W.; Wolf, X.A.; Grunnet, L.G.; Ringgaard, A.K.; Ingvorsen, C.; Winkel, L.; Kalisz, M.; Dalgaard, K.; Bruun, C.; et al. The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates. Mol. Metab. 2018, 8, 144–157. [Google Scholar] [CrossRef]
- Reglodi, D.; Kiss, P.; Horvath, G.; Lubics, A.; Laszlo, E.; Tamas, A.; Racz, B.; Szakaly, P. Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney. Neuropeptides 2012, 46, 61–70. [Google Scholar] [CrossRef]
- Arms, L.; Vizzard, M.A. Neuropeptides in lower urinary tract function. In Urinary Tract. Handbook of Experimental Pharmacology; Andersson, K.E., Michel, M., Eds.; Springer: Berlin, Germany, 2011; pp. 395–423. [Google Scholar] [CrossRef] [Green Version]
- Horvath, G.; Mark, L.; Brubel, R.; Szakaly, P.; Racz, B.; Kiss, P.; Tamas, A.; Helyes, Z.; Lubics, A.; Hashimoto, H.; et al. Mice deficient in pituitary adenylate cyclase activating polypeptide display increased sensitivity to renal oxidative stress in vitro. Neurosci. Lett. 2010, 469, 70–74. [Google Scholar] [CrossRef]
- Horvath, G.; Racz, B.; Szakaly, P.; Kiss, P.; Laszlo, E.; Hau, L.; Tamas, A.; Helyes, Z.; Lubics, A.; Hashimoto, H.; et al. Mice deficient in neuropeptide PACAP demonstrate increased sensitivity to in vitro kidney hypoxia. Transplant. Proc. 2010, 42, 2293–2295. [Google Scholar] [CrossRef]
- Horvath, G.; Opper, B.; Reglodi, D. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is protective in inflammation and oxidative stress-induced damage in the kidney. Int. J. Mol. Sci. 2019, 20, 4944. [Google Scholar] [CrossRef] [Green Version]
- Arimura, A.; Li, M.; Batuman, V. Potential protective action of pituitary adenylate cyclase-activating polypeptide (PACAP38) on in vitro and in vivo models of myeloma kidney injury. Blood 2006, 107, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cortez, S.; Nakamachi, T.; Batuman, V.; Arimura, A. Pituitary adenylate cyclase activating polypeptide is a potent inhibitor of the growth of light chain secreting human multiple myeloma cells. Cancer Res. 2006, 66, 8796–8803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Maderdrut, J.L.; Lertora, J.J.L.; Batuman, V. Intravenous infusion of pituitary adenylate cyclase activating polypeptide (PACAP) in a patient with multiple myeloma and myeloma kidney: A case study. Peptides 2007, 28, 1891–1895. [Google Scholar] [CrossRef]
- Li, M.; Maderdrut, J.L.; Lertora, J.J.L.; Arimura, A.; Batuman, V. Renoprotection by pituitary adenylate cyclase activating polypeptide in multiple myeloma and other kidney diseases. Regul. Pept. 2008, 145, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Khan, A.M.; Maderdrut, J.L.; Simon, E.E.; Batuman, V. The effect of PACAP38 on MyD88-mediated signal transduction in ischemia-/hypoxia-induced acute kidney injury. Am. J. Nephrol. 2010, 32, 522–532. [Google Scholar] [CrossRef]
- Eneman, B.; van den Heuvel, L.; Freson, K.; Van Geet, C.; Willemsen, B.; Dijkman, H.; Levtchenko, E. Distribution and function of PACAP and its receptors in the healthy and nephrotic kidney. Nephron 2016, 132, 301–311. [Google Scholar] [CrossRef]
- Horvath, G.; Reglodi, D.; Czetany, P.; Illes, A.; Reman, G.; Fekete, A.; Toth, G.; Laszlo, E.; Opper, B. Effects of pituitary adenylate cyclase activating polypeptide in human proximal tubule cells against gentamicin toxicity. Int. J. Pept. Res. Ther. 2019, 25, 257–264. [Google Scholar] [CrossRef]
- Li, M.; Balamuthusamy, S.; Khan, A.M.; Maderdrut, J.L.; Simon, E.E.; Batuman, V. Pituitary adenylate cyclase-activating polypeptide ameliorates cisplatin-induced acute kidney injury. Peptides 2010, 31, 592–602. [Google Scholar] [CrossRef]
- Li, M.; Balamuthusamy, S.; Khan, A.M.; Maderdrut, J.L.; Simon, E.E.; Batuman, V. Pituitary adenylate cyclase-activating polypeptide prevents cisplatin-induced renal failure. J. Mol. Neurosci. 2011, 43, 58–66. [Google Scholar] [CrossRef]
- Khan, A.M.; Li, M.; Brant, E.; Maderdrut, J.L.; Majid, D.S.A.; Simon, E.E.; Batuman, V. Renoprotection with pituitary adenylate cyclase-activating polypeptide in cyclosporine A-induced nephrotoxicity. J. Investig. Med. 2011, 59, 793–802. [Google Scholar] [CrossRef]
- Khan, A.M.; Maderdrut, J.L.; Li, M.; Toliver, H.L.; Coy, D.H.; Simon, E.E.; Batuman, V. Pituitary adenylate cyclase-activating polypeptide prevents contrast-induced nephropathy in a novel mouse model. Physiol. Rep. 2013, 1, e00163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reglodi, D.; Tamas, A.; Koppan, M.; Szogyi, D.; Welke, L. Role of PACAP in female fertility and reproduction at gonadal level—Recent advances. Front. Endocrinol. 2012, 3, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winters, S.J.; Moore, J.P., Jr. PACAP: A regulator of mammalian reproductive function. Mol. Cell. Endocrinol. 2020, 518, 110912. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, A.; Lelievre, V.; Roselli, C.E.; Salameh, W.; Lue, Y.H.; Lawson, G.; Muller, J.M.; Waschek, J.A.; Vilain, E. Delayed testicular aging in pituitary adenylate cyclase-acivating peptide (PACAP) null mice. Proc. Natl. Acad. Sci. USA 2006, 103, 3793–3798. [Google Scholar] [CrossRef] [Green Version]
- Horvath, G.; Reglodi, D.; Brubel, R.; Halasz, M.; Barakonyi, A.; Tamas, A.; Fabian, E.; Opper, B.; Toth, G.; Cohen, M.; et al. Investigation of the possible functions of PACAP in human trophoblast cells. J. Mol. Neurosci. 2014, 54, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Boronkai, A.; Brubel, R.; Racz, B.; Tamas, A.; Kiss, P.; Horvath, G.; Lubics, A.; Szigeti, A.; Bellyei, S.; Toth, G.; et al. Effects of pituitary adenylate cyclase activating polypeptide on the survival and signal transduction pathways in human choriocarcinoma cells. Ann. N. Y. Acad. Sci. 2009, 1163, 353–357. [Google Scholar] [CrossRef]
- Reglodi, D.; Borzsei, R.; Bagoly, T.; Boronkai, A.; Racz, B.; Tamas, A.; Kiss, P.; Horvath, G.; Brubel, R.; Nemeth, J.; et al. Agonistic behavior of PACAP6-38 on sensory nerve terminals and cytotrophoblast cells. J. Mol. Neurosci. 2008, 36, 270–278. [Google Scholar] [CrossRef]
- Brubel, R.; Boronkai, A.; Reglodi, D.; Racz, B.; Nemeth, J.; Kiss, P.; Lubics, A.; Toth, G.; Horvath, G.; Varga, T.; et al. Changes in the expression of pituitary adenylate cyclase-activating polypeptide in the human placenta during pregnancy and its effects on the survival of JAR choriocarcinoma cells. J. Mol. Neurosci. 2010, 42, 450–458. [Google Scholar] [CrossRef]
- Shan, W.; Lu, S.; Ou, B.; Feng, J.; Wang, Z.; Li, H.; Lu, X.; Ma, Y. PACAP ameliorates the fertility of obese mice through PAC1/PKA/ERK/Nrf2 signal axis. J. Endocrinol. 2021, 248, 337–354. [Google Scholar] [CrossRef]
- Gutiérrez-Cañas, I.; Rodríguez-Henche, N.; Bolaños, O.; Carmena, M.J.; Prieto, J.C.; Juarranz, M.G. VIP and PACAP are autocrine factors that protect the androgen-independent prostate cancer cell line PC-3 from apoptosis induced by serum withdrawal. Br. J. Pharmacol. 2003, 139, 1050–1058. [Google Scholar] [CrossRef] [Green Version]
- Zibara, K.; Zeidan, A.; Mallah, K.; Kassem, N.; Awad, A.; Mazurier, F.; Badran, B.; El-Zein, N. Signaling pathways activated by PACAP in MCF-7 breast cancer cells. Cell. Signal. 2018, 50, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Horvath, G.; Reglodi, D.; Opper, B.; Brubel, R.; Tamas, A.; Kiss, P.; Toth, G.; Csernus, V.; Matkovits, A.; Racz, B. Effects of PACAP on the oxidative stress-induced cell death in chicken pinealocytes is influenced by the phase of the circadian clock. Neurosci. Lett. 2010, 484, 148–152. [Google Scholar] [CrossRef] [PubMed]
Cell Type | Species | Stressor | Effect on CD | Mechanism | References |
---|---|---|---|---|---|
CENTRAL NERVOUS SYSTEM | |||||
Cerebellum | |||||
Cerebellar granule cell | Rat | Serum and K+ deprivation | Anti-apoptotic | cAMP/PKA pathway | [18,19] |
[24,25,26] | |||||
Cerebellar granule cell | Rat | K+ deprivation | Anti-apoptotic | cAMP/PKA pathway | [20,22] |
Cerebellar granule cell | Rat | Ethanol | Anti-apoptotic | Caspase-3↓ | [21] |
Caspase-6↓ | |||||
Cerebellar granule cell | Rat | Ceramide | Anti-apoptotic | Caspase-3↓ | [27,28] |
Restoration of mitochondrial activity | |||||
Cerebellar granule cell | Rat | H2O2-induced oxidative stress | Anti-apoptotic | cAMP/PKA pathway caspase-3↓ | [30] |
Cerebellar granule cell | Rat | Abeta25–35 | No effect | cAMP/PKA pathway | [32] |
Caspase-3↓ | |||||
Cerebellar granule cell | Rat | 4-Hydroxynonenal | Anti-apoptotic | [26] | |
Cerebellar granule cell | Rat | Cisplatin | Anti-apoptotic | Caspase-3↓ | [34] |
Caspase-9↓ | |||||
Bax↓ | |||||
Cerebellar granule cell * | PACAP knockout mouse | Ethanol | Higher sensitivity | [36] | |
Cerebellar granule cell * | PACAP knockout mouse | Oxidative stress | higher sensitivity | [36] | |
Cerebrum | |||||
Cortical neuron | Rat | Glu | Cell death↓ | cAMP/PKA pathway | [37,38,39] |
PACAP mRNA↑ | |||||
Primary culture of cerebral cortex | Rat | NMDA | Cell death↓ | Involvement of BDNF | [40] |
Primary culture of cerebral cortex | Rat | Serum deprivation | Cell death↓ | [40] | |
Primary culture of cerebral cortex | Rat | Ionomycin | Cell death↓ | [41] | |
Primary culture of cerebral cortex | Rat | Tat | Cell death↓ | [42] | |
Primary culture of cerebral cortex | Rat | Oxygen-glucose deprivation-reperfusion | Anti-apoptotic | Caspase-3↓ | [43] |
Cytochrome-c↓ | |||||
Primary cortical neuron culture | Rat | Sodium nitroprusside | Cell death↓ | Bcl-2↑ | [44] |
Caspase-3↓ | |||||
Primary cortical neuron culture | Rat | Thrombin, thrombin receptor activating peptide | Cell death↓ | Caspase-3↓ | [45] |
SH-SY5Y neuroblastoma cell | Human | High ethanol | Cell death↓ | [51] | |
SH-SY5Y neuroblastoma cell | Human | High nicotine | Cell death↓ | [51] | |
SH-SY5Y neuroblastoma cell | Human | Salsolinol | Cell death↓ | Caspase-3↓ | [52] |
SH-SY5Y neuroblastoma cell | Human | LPS + IFNγ-stimulated microglia-derived mediators | Anti-apoptotic | caspase-3↓ | [53] |
pCREB↑ | |||||
BDNF↑ | |||||
SH-SY5Y neuroblastoma cell | Human | LPS-stimulated microglia-derived mediators | Anti-apoptotic | Caspase-3↓ | [53] |
pCREB↑ | |||||
BDNF↑ | |||||
SH-SY5Y neuroblastoma cell | Human | MPP+ | Autophagy↓ | [17] | |
Cortical astrocytes | Rat | H2O2-induced oxidative stress | Cell death↓ | Caspase-3↓ | [46] |
hCMEC/D3 cerebral endothelial cells | Human | Glucose deprivation | No effect | [47] | |
hCMEC/D3 cerebral endothelial cells | Human | DMNQ-induced oxidative stress | No effect | [47] | |
Mesencephalic neuron/glia culture | Rat | LPS | Cell death↓ | [48] | |
Mesencephalic neuron/glia culture | Rat | MPP+ | Cell death↓ | [48] | |
Cortical neuron/glia culture | Mouse | LPS | Cell death↓ | [49] | |
Mesencephalic neuron culture | Rat | 6-OHDA | Cell death↓ | [50] | |
Neural stem cells | Mouse | Hypoglycemia | Cell death↓ | Caspase-3↓ | [54] |
Bcl-2↑ | |||||
Neural stem cells | Mouse | Palmitate-induced lipotoxicity | Cell death↓ | Bcl-2↑ | [55] |
Neural stem cells | Mouse | Ketamine | Cell death↓ | Caspase-3↓ | [56] |
Bcl-2↑ | |||||
Neuro-2a neuroblastoma cell | Mouse | MPP+ | Anti-apoptotic | Phospho-eIF2α↓ | [71] |
mTOR↑ | |||||
Hippocampal culture | Mouse | HIV envelope protein gp120 | Cell death↓ | [57] | |
STHdhQ111/Q111 striatal cells | Mouse | Mutant huntingtin expression | Anti-apoptotic | pERK↑ | [58] |
pAkt↑ | |||||
Caspase-3↓ | |||||
BV-2 microglia | Mouse | Rotenone | Cell death↓ | [59] | |
Spinal cord | |||||
Primary culture of motoneurons | Rat | Glu | Cell death↓ | cAMP/PKA pathway | [60] |
NSC-34 motor neuron | Mouse | Serum deprivation | Anti-apoptotic | pERK1/2↑ | [61] |
NSC-34 motor neuron | Mouse | Desferrioxamine mesylate salt | Anti-apoptotic | LC3II↓ | [62] |
Modulation of autophagy | p62↑ | ||||
pERK1/2↑ | |||||
PERIPHERAL NERVOUS SYSTEM | |||||
Trigeminal ganglion cell | Mouse | Hypoxia | Anti-apoptotic | Caspase-3↓ | [63] |
Cytochrome c↓ | |||||
CRL-2768 schwannoma cell | Rat | Serum deprivation | Anti-apoptotic | Bcl-2 mRNA↓ | [64] |
Bax mRNA↓ | |||||
PC12 | Rat | Prion protein fragment | Cell death↓ | Caspase-3↓ | [65] |
pheochromocytoma | |||||
cell | |||||
PC12 | Rat | Beta-amyloid peptide | Cell death↓ | Caspase-3↓ | [66] |
pheochromocytoma | |||||
cell | |||||
PC12 pheochromocytoma cell | Rat | Rotenone | Anti-apoptotic | Caspase-3↓ PKA ERK, p38 MAPK | [67] |
PC12 pheochromocytoma cell | Rat | Anisomycin | Anti-apoptotic | PKA | [68] |
PC12 | Rat | MPP+ | Cell death↓ | [70] | |
pheochromocytoma | |||||
cell |
Cell Type | Species | Stressor | Effect on CD | Mechanism | Reference(s) |
---|---|---|---|---|---|
Eye | |||||
ARPE-19 pigment epithelial cell | Human | H2O2-induced oxidative stress | Anti-apoptotic | [72] | |
ARPE-19 pigment epithelial cell | Human | H2O2-induced oxidative stress | Anti-apoptotic | pAkt↑ pERK1/2↑ pp38MAPK ↓ pJNK↓ p53↓ pp53↓ Bad↓ Bax↓ FADD↓ SMAC/Diablo↓ Fas/TNFSF6↓ | [73] |
ARPE-19 pigment epithelial cell | Human | Hyperglycemia/hypoxia insult | Anti-apoptotic | pAkt↑ pERK1/2↑ pp38 MAPK↓ | [74,75] |
RGC-5 ganglion cell | Rat | UV-B irradiation | Cell death↓ | [76] | |
Retina explant | Rat | Anisomycin | Anti-apoptotic | cAMP/PKA pathway | [80] |
Retina explant | rat | Thapsigargin | Cell death↓ | cAMP/PKA pathway | [80] |
Corneal endothelial cell | Human | Growth factor deprivation | Cell death↓ | [81] | |
Corneal endothelial cell | Human | UV-B irradiation | Anti-apoptotic | Caspase-3↓ Bax↓ Bcl-2↑ | [82] |
Inner Ear | |||||
Primary cochlear cell culture | Chicken | H2O2-induced oxidative stress | Anti-apoptotic | caspase-3↓ | [83] |
Cell Type | Species | Stressor | Effect on CD | Mechanism | Reference(s) |
---|---|---|---|---|---|
Cardiovascular System | |||||
EOMA | Mouse | H2O2-induced oxidative stress | Anti-apoptotic | ERK↑ | [86] |
hemangioendothelioma | p38 MAPK↓ | ||||
JNK↓ | |||||
Endothelial colony-forming cells | Human | TNF-α | Anti-apoptotic | [87] | |
Primary cardiomyocyte culture | Rat | H2O2-induced oxidative stress | Anti-apoptotic | Caspase-3↓ | [88,89] |
Bcl-2↑ | |||||
Bad↑ | |||||
ASK-1↓ | |||||
Primary cardiomyocyte culture | Rat | Simulated ischemia/reperfusion | Anti-apoptotic | Phospho-PKA↑ | [90,91] |
Phospho-Akt↑ | |||||
Phospho-Bad↑ | |||||
14-3-3↑ | |||||
Bcl-xL↑ | |||||
H9C2 cardiomyoblast | Rat | Irradiation | Anti-apoptotic | Bcl-2↑ | [92] |
Bax↓ | |||||
Immune System | |||||
T cell | Mouse | Anti-CD3 | Anti-apoptotic | FasL↓ | [93] |
Respiratory System | |||||
L2 alveolar cell | Rat | Cigarette smoke extract | Cell death ↓ | Caspase-3↓ | [95,96] |
Gastrointestinal Tract | |||||
INT 407 jejunal and ileal cell | Human | H2O2-induced oxidative stress | Cell death ↓ | [99] | |
INT 407 jejunal and ileal cell | Human | CoCl2-induced in vitro hypoxia | No effect | [99] | |
INT 407 jejunal and ileal cell | Human | gamma radiation | No effect | [99] | |
INT 407 jejunal and ileal cell * | Human | H2O2-induced | Higher vulnerability | [99] | |
oxidative stress | |||||
Primary mouse hepatocyte culture | Mouse | H2O2 | Anti-apoptotic | [101] | |
Primary mouse hepatocyte culture | Mouse | TNF-α | Anti-apoptotic | Caspase-3↓ | [101] |
WRL-68 hepatocyte | H2O2 | No effect | [102] | ||
Hep-G2 hepatocellular carcinoma cell | H2O2 | No effect | [102] | ||
RIN-m5F pancreatic cell | Rat | Streptozotocin | Cell death ↓ | Bcl-2 mRNA↑ | [104] |
Noxa mRNA↓ | |||||
Bax mrNA↓ | |||||
NIT-1 insulinoma cell * | Mouse | Mixture of cytokines (IL-1β, IFNγ) | Cell survival↑ | [105] | |
EndoC-βH1 pancreatic cell | Human | Mixture of cytokines (IL-1β, IFNγ, TNFα) | No effect | [106] | |
Urinary Tract | |||||
Primary renal cell culture | Rat | H2O2-induced oxidative stress | Cell death ↓ | [102] | |
Primary renal cell culture | Mouse | H2O2-induced oxidative stress | Cell death ↓ | [109] | |
Primary renal cell culture * | Mouse | H2O2-induced oxidative stress | Higher vulnerability | [109] | |
SV 40 proximal tubule epithelial cell | Human | Myeloma κ light chain | Cell death ↓ | [112] | |
proximal tubule epithelial cell | Mouse | Mineral oil induced in vitro hypoxia | Anti-apoptotic | [116] | |
HK-2 proximal tubule cell | Human | Albumin | No effect | [117] | |
HK-2 proximal tubule cell | Human | Gentamicin | Cell death ↓ | [118] | |
HK-2 proximal tubule cell | Human | Cisplatin | Anti-apoptotic | DNA fragmentation↓ | [119] |
p53↓ | |||||
Caspase-7↑, PARP-1↑ | |||||
APE-1↑ | |||||
Bcl-2↑, | |||||
Bcl-xL↑ | |||||
Bax↓ | |||||
Proximal tubule epithelial cell | Mouse | Cisplatin | Anti-apoptotic | [120] | |
HK-2 proximal tubule cell | Human | Cyclosporin A | Anti-apoptotic | [121] | |
HK-2 proximal tubule cell | Human | Contrast medium | Anti-apoptotic | [122] | |
Reproductive System | |||||
HIPEC65 trophoblast | Human | Methothrexate | No effect | [126] | |
HTR-8/Svneo trophoblast | Human | H2O2-induced oxidative stress | Cell death↓ | [126] | |
JAR choriocarcinoma cell | Human | H2O2-induced oxidative stress | Cell death↑ | p-AKT↓ | [127] |
p-ERK-1/2↓ | |||||
p-p38MAPK↓ | |||||
p-JNK/SAPK↓ | |||||
Bax↓ | |||||
JAR choriocarcinoma cell | Human | CoCl2-induced in vitro hypoxia | Cell death↑ | [127] | |
JAR choriocarcinoma cell | Human | Methothrexate | No effect | [129] | |
CHO ovary | Hamster | Cisplatin | No effect | [34] | |
GC-2 spermatocyte | Mouse | Palmitate | Anti-apoptotic | Caspase-3↓ | [130] |
Bax↓ | |||||
Bcl-2↑ | |||||
PC-3 prostate | Human | Serum deprivation | Cell death↓ | Bcl-2↑ | [131] |
Procaspase-3↑ | |||||
Glands | |||||
MCF-7 breast adenocarcinoma | Human | - | Pro-apoptotic | Bax↑ | [132] |
Bcl-2↓ | |||||
Salivary gland extract | Snail | Dopamine | Anti-apoptotic | Caspase-3↓ | [13] |
Salivary gland extract | Snail | Colchicine | Anti-apoptotic | [13] | |
Pinealocyte | Chicken | H2O2-induced oxidative stress | Anti-apoptotic in the dark phase, | [133] | |
No effect in the light phase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvath, G.; Reglodi, D.; Fabian, E.; Opper, B. Effects of Pituitary Adenylate Cyclase Activating Polypeptide on Cell Death. Int. J. Mol. Sci. 2022, 23, 4953. https://doi.org/10.3390/ijms23094953
Horvath G, Reglodi D, Fabian E, Opper B. Effects of Pituitary Adenylate Cyclase Activating Polypeptide on Cell Death. International Journal of Molecular Sciences. 2022; 23(9):4953. https://doi.org/10.3390/ijms23094953
Chicago/Turabian StyleHorvath, Gabriella, Dora Reglodi, Eszter Fabian, and Balazs Opper. 2022. "Effects of Pituitary Adenylate Cyclase Activating Polypeptide on Cell Death" International Journal of Molecular Sciences 23, no. 9: 4953. https://doi.org/10.3390/ijms23094953