Next Article in Journal
Discrimination of Brassica juncea Varieties Using Visible Near-Infrared (Vis-NIR) Spectroscopy and Chemometrics Methods
Previous Article in Journal
Tuning Immobilized Enzyme Features by Combining Solid-Phase Physicochemical Modification and Mineralization
Previous Article in Special Issue
The Plasmid pEX18Gm Indirectly Increases Caenorhabditis elegans Fecundity by Accelerating Bacterial Methionine Synthesis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Host–Pathogen Interaction 3.0

by
Andreas Burkovski
Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
Int. J. Mol. Sci. 2022, 23(21), 12811; https://doi.org/10.3390/ijms232112811
Submission received: 17 October 2022 / Revised: 19 October 2022 / Accepted: 20 October 2022 / Published: 24 October 2022
(This article belongs to the Special Issue Host-Pathogen Interaction 3.0)

Graphical Abstract

Microorganisms can interact with plants, animals and humans in many different ways, e.g., beneficially as symbionts, indifferently as commensals or harmfully as pathogens. Today, a wide variety of molecular and cell biology tools, including advanced microscopy and -omics techniques, allow us to study these interactions at a molecular level. It is the dedicated aim of this serial of Special Issues, i.e., “Host–Pathogen Interaction”, Host–Pathogen Interaction 2.0” and “Host–Pathogen-Interaction 3.0”, to provide an overview about various aspects of pathogenic microorganisms (viruses, bacteria, fungi and protozoa) and their interaction with their host organisms. In fact, contributions to “Host–Pathogen Interaction 3.0” and the preceding Special Issues on this subject may be divided into different topics: (i) characterization of model systems, (ii) analysis of bacteria–host interactions, (iii) analysis of viral compounds, and (iv) characterization of fungal and protozoal pathogenicity.
Invertebrate model systems provide a cost effective and ethically unproblematic alternative to animal trials, especially in the beginning of a research project to gain first insights in the respective pathosystem or in high-throughput studies. A prerequisite is a proper characterization of the model. One of the best investigated model systems in this respect is the nematode Caenorhabditis elegans due to advantageous properties such as short life span, transparency, genetic tractability and ease of culture. Interestingly, Guo et al. [1] showed that plasmids of its standard bacterial diet Escherichia coli can interfere with nematode metabolism, an unexpected observation, which may also have an impact on studies of pathogenic bacteria. Other established model systems are protozoa such as Acanthamoeba castellanii, which was used to study Salmonella enterica sv. Typhimurium [2], the yellow mealworm Tenebrio molitor, which was analyzed in respect to antimicrobial peptide production in several of the submitted manuscripts [3,4,5], and larvae of the greater wax moth Galleria mellonella [6].
Invertebrate model systems are especially valuable for the analysis of bacterial pathogens. In fact, studies describing bacterium-host interaction were the majority of submissions to the abovementioned Special Issues. Reviews submitted summarize our current knowledge on important pathogens such as Corynebacterium diphtheriae [7], Staphylococcus aureus [8,9], Legionella species [10] and Neisseria meningitidis [11], while research articles highlight specific aspects of host–pathogen interaction. Different mycobacterial pathogens [12,13], Corynebacterium species [14,15], Helicobacter pylori [16], Mycoplasma fermentans [17], rickettsiae [18] and S. enterica [19] were studied in respect to their interaction with human cell lines. In addition to other human pathogens [20,21,22,23,24], animal- [25,26] and plant-pathogenic bacteria [27,28,29,30] were investigated.
In addition to pathogenic bacteria, fungi are important pathogens, especially in respect to agricultural plant diseases. Papers dealing with Fusarium infection of wheat [31] and flax [32], crop infection by Rhizoctonia solani [33], grapevine infection by Lasiodiplodia theobromae [34] and the role of fatty acid synthesis in the infection process by Magnaporthe oryzae [35] were submitted.
In addition to bacterial and fungal pathogens, plants are affected by viral diseases. Pathogenicity factors of Tobacco Curly Shoot Virus and Tobacco Mosaic Virus were studied in manuscripts submitted to the abovementioned Special Issues [36,37]. Of course, humans are also infected by viruses. Prominent examples are SARS-CoV-2 [38,39], influenza [40,41], Ebola virus [42] and human papillomavirus [43]. Other papers submitted to this Special Issue serial are focusing on viruses infecting animals such as pigs [44] and ducks [45].
Taken together, this serial of Special Issues provides an excellent overview about various aspects of viral, bacterial and eukaryotic pathogens and their interactions with their respective human, animal and plant hosts. The fact that several Special Issues were already successfully launched in the International Journal of Molecular Sciences emphasizes the scientific interest and importance of this research field at the interface of molecular biology and medicine.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Guo, R.; Li, G.; Lu, L.; Sun, S.; Liu, T.; Li, M.; Zheng, Y.; Walhout, A.J.M.; Wu, J.; Li, H. The Plasmid pEX18Gm Indirectly Increases Caenorhabditis elegans Fecundity by Accelerating Bacterial Methionine Synthesis. Int. J. Mol. Sci. 2022, 23, 5003. [Google Scholar] [CrossRef] [PubMed]
  2. Balkin, A.S.; Plotnikov, A.O.; Gogoleva, N.E.; Gogolev, Y.V.; Demchenko, K.N.; Cherkasov, S.V. Cappable-Seq Reveals Specific Patterns of Metabolism and Virulence for Salmonella Typhimurium Intracellular Survival within Acanthamoeba castellanii. Int. J. Mol. Sci. 2021, 22, 9077. [Google Scholar] [CrossRef] [PubMed]
  3. Ko, H.J.; Jo, Y.H.; Patnaik, B.B.; Park, K.B.; Kim, C.E.; Keshavarz, M.; Jang, H.A.; Lee, Y.S.; Han, Y.S. IKKγ/NEMO Is Required to Confer Antimicrobial Innate Immune Responses in the Yellow Mealworm, Tenebrio molitor. Int. J. Mol. Sci. 2020, 21, 6734. [Google Scholar] [CrossRef]
  4. Edosa, T.T.; Jo, Y.H.; Keshavarz, M.; Kim, I.S.; Han, Y.S. Biosurfactants Induce Antimicrobial Peptide Production through the Activation of TmSpatzles in Tenebrio molitor. Int. J. Mol. Sci. 2020, 21, 6090. [Google Scholar] [CrossRef]
  5. Jang, H.A.; Patnaik, B.B.; Ali Mohammadie Kojour, M.; Kim, B.B.; Bae, Y.M.; Park, K.B.; Lee, Y.S.; Jo, Y.H.; Han, Y.S. TmSpz-like Plays a Fundamental Role in Response to E. coli but Not S. aureus or C. albicans Infection in Tenebrio molitor via Regulation of Antimicrobial Peptide Production. Int. J. Mol. Sci. 2021, 22, 10888. [Google Scholar] [CrossRef] [PubMed]
  6. Palusińska-Szysz, M.; Zdybicka-Barabas, A.; Luchowski, R.; Reszczyńska, E.; Śmiałek, J.; Mak, P.; Gruszecki, W.I.; Cytryńska, M. Choline Supplementation Sensitizes Legionella dumoffii to Galleria mellonella Apolipophorin III. Int. J. Mol. Sci. 2020, 21, 5818. [Google Scholar] [CrossRef]
  7. Ott, L.; Möller, J.; Burkovski, A. Interactions between the Re-Emerging Pathogen Corynebacterium diphtheriae and Host Cells. Int. J. Mol. Sci. 2022, 23, 3298. [Google Scholar] [CrossRef]
  8. Wójcik-Bojek, U.; Różalska, B.; Sadowska, B. Staphylococcus aureus—A Known Opponent against Host Defense Mechanisms and Vaccine Development—Do We Still Have a Chance to Win? Int. J. Mol. Sci. 2022, 23, 948. [Google Scholar] [CrossRef]
  9. Mrochen, D.M.; de Oliveira, L.M.F.; Raafat, D.; Holtfreter, S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int. J. Mol. Sci. 2020, 21, 7061. [Google Scholar] [CrossRef]
  10. Kowalczyk, B.; Chmiel, E.; Palusinska-Szysz, M. The Role of Lipids in Legionella-Host Interaction. Int. J. Mol. Sci. 2021, 22, 1487. [Google Scholar] [CrossRef]
  11. Borkowski, J.; Schroten, H.; Schwerk, C. Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood–Brain Barriers. Int. J. Mol. Sci. 2020, 21, 8788. [Google Scholar] [CrossRef] [PubMed]
  12. Molina-Olvera, G.; Rivas-Ortiz, C.I.; Schcolnik-Cabrera, A.; Castillo-Rodal, A.I.; López-Vidal, Y. RNA Microarray-Based Comparison of Innate Immune Phenotypes between Human THP-1 Macrophages Stimulated with Two BCG Strains. Int. J. Mol. Sci. 2022, 23, 4525. [Google Scholar] [CrossRef] [PubMed]
  13. Kang, M.; Kim, H.W.; Yu, A.-R.; Yang, J.S.; Lee, S.H.; Lee, J.W.; Yoon, H.S.; Lee, B.S.; Park, H.-W.; Lee, S.K.; et al. Comparison of Macrophage Immune Responses and Metabolic Reprogramming in Smooth and Rough Variant Infections of Mycobacterium mucogenicum. Int. J. Mol. Sci. 2022, 23, 2488. [Google Scholar] [CrossRef] [PubMed]
  14. Möller, J.; Busch, A.; Berens, C.; Hotzel, H.; Burkovski, A. Newly Isolated Animal Pathogen Corynebacterium silvaticum Is Cytotoxic to Human Epithelial Cells. Int. J. Mol. Sci. 2021, 22, 3549. [Google Scholar] [CrossRef]
  15. Weerasekera, D.; Hahn, J.; Herrmann, M.; Burkovski, A. Induction of Necrosis in Human Macrophage Cell Lines by Corynebacterium diphtheriae and Corynebacterium ulcerans Strains Isolated from Fatal Cases of Systemic Infections. Int. J. Mol. Sci. 2019, 20, 4109. [Google Scholar] [CrossRef] [Green Version]
  16. Wen, S.-H.; Hong, Z.-W.; Chen, C.-C.; Chang, H.-W.; Fu, H.-W. Helicobacter pylori Neutrophil-Activating Protein Directly Interacts with and Activates Toll-like Receptor 2 to Induce the Secretion of Interleukin-8 from Neutrophils and ATRA-Induced Differentiated HL-60 Cells. Int. J. Mol. Sci. 2021, 22, 11560. [Google Scholar] [CrossRef]
  17. Curreli, S.; Tettelin, H.; Benedetti, F.; Krishnan, S.; Cocchi, F.; Reitz, M.; Gallo, R.C.; Zella, D. Analysis of DnaK Expression from a Strain of Mycoplasma fermentans in Infected HCT116 Human Colon Carcinoma Cells. Int. J. Mol. Sci. 2021, 22, 3885. [Google Scholar] [CrossRef]
  18. Sahni, A.; Narra, H.P.; Sahni, S.K. Activation of Mechanistic Target of Rapamycin (mTOR) in Human Endothelial Cells Infected with Pathogenic Spotted Fever Group Rickettsiae. Int. J. Mol. Sci. 2020, 21, 7179. [Google Scholar] [CrossRef]
  19. Araujo-Garrido, J.L.; Baisón-Olmo, F.; Bernal-Bayard, J.; Romero, F.; Ramos-Morales, F. Tubulin Folding Cofactor TBCB is a Target of the Salmonella Effector Protein SseK1. Int. J. Mol. Sci. 2020, 21, 3193. [Google Scholar] [CrossRef]
  20. Nattramilarasu, P.K.; de Sá, F.D.L.; Schulzke, J.-D.; Bücker, R. Immune-Mediated Aggravation of the Campylobacter concisus-Induced Epithelial Barrier Dysfunction. Int. J. Mol. Sci. 2021, 22, 2043. [Google Scholar] [CrossRef]
  21. Cho, S.-H.; Lee, K.M.; Kim, C.-H.; Kim, S.S. Construction of a Lectin–Glycan Interaction Network from Enterohemorrhagic Escherichia coli Strains by Multi-omics Analysis. Int. J. Mol. Sci. 2020, 21, 2681. [Google Scholar] [CrossRef] [PubMed]
  22. Dutra, I.L.; Araújo, L.G.; Assunção, R.G.; Lima, Y.A.; Nascimento, J.R.; Vale, A.A.M.; Alves, P.C.S.; Trovão, L.O.; Santos, A.C.M.; Silva, R.M.; et al. Pic-Producing Escherichia coli Induces High Production of Proinflammatory Mediators by the Host Leading to Death by Sepsis. Int. J. Mol. Sci. 2020, 21, 2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Zeng, C.; Liu, Z.; Han, Z. Structure of Staphylococcal Enterotoxin N: Implications for Binding Properties to Its Cellular Proteins. Int. J. Mol. Sci. 2019, 20, 5921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Plaza, N.; Pérez-Reytor, D.; Ramírez-Araya, S.; Pavón, A.; Corsini, G.; Loyola, D.E.; Jaña, V.; Pavéz, L.; Navarrete, P.; Bastías, R.; et al. Conservation of Small Regulatory RNAs in Vibrio parahaemolyticus: Possible role of RNA-OUT Encoded by the Pathogenicity Island (VPaI-7) of Pandemic Strains. Int. J. Mol. Sci. 2019, 20, 2827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Meurer, M.; Öhlmann, S.; Bonilla, M.C.; Valentin-Weigand, P.; Beineke, A.; Hennig-Pauka, I.; Schwerk, C.; Schroten, H.; Baums, C.G.; von Köckritz-Blickwede, M.; et al. Role of Bacterial and Host DNases on Host-Pathogen Interaction during Streptococcus suis Meningitis. Int. J. Mol. Sci. 2020, 21, 5289. [Google Scholar] [CrossRef]
  26. Zhi, F.; Zhou, D.; Bai, F.; Li, J.; Xiang, C.; Zhang, G.; Jin, Y.; Wang, A. VceC Mediated IRE1 Pathway and Inhibited CHOP-induced Apoptosis to Support Brucella Replication in Goat Trophoblast Cells. Int. J. Mol. Sci. 2019, 20, 4104. [Google Scholar] [CrossRef] [Green Version]
  27. Sagawa, C.H.D.; de Assis, R.A.B.; Zaini, P.A.; Wilmarth, P.A.; Phinney, B.S.; Moreira, L.M.; Dandekar, A.M. Proteome Analysis of Walnut Bacterial Blight Disease. Int. J. Mol. Sci. 2020, 21, 7453. [Google Scholar] [CrossRef]
  28. de Souza, J.B.; Almeida-Souza, H.O.; Zaini, P.A.; Alves, M.N.; de Souza, A.G.; Pierry, P.M.; da Silva, A.M.; Goulart, L.R.; Dandekar, A.M.; Nascimento, R. Xylella fastidiosa subsp. pauca Strains Fb7 and 9a5c from Citrus Display Differential Behavior, Secretome, and Plant Virulence. Int. J. Mol. Sci. 2020, 21, 6769. [Google Scholar] [CrossRef]
  29. Jollard, C.; Foissac, X.; Desqué, D.; Razan, F.; Garcion, C.; Beven, L.; Eveillard, S. Flavescence Dorée Phytoplasma Has Multiple ftsH Genes that Are Differentially Expressed in Plants and Insects. Int. J. Mol. Sci. 2020, 21, 150. [Google Scholar] [CrossRef] [Green Version]
  30. Ying, X.; Wan, M.; Hu, L.; Zhang, J.; Li, H.; Lv, D. Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus. Int. J. Mol. Sci. 2019, 20, 5575. [Google Scholar] [CrossRef]
  31. Rocher, F.; Alouane, T.; Philippe, G.; Martin, M.-L.; Label, P.; Langin, T.; Bonhomme, L. Fusarium graminearum Infection Strategy in Wheat Involves a Highly Conserved Genetic Program That Controls the Expression of a Core Effectome. Int. J. Mol. Sci. 2022, 23, 1914. [Google Scholar] [CrossRef]
  32. Samsonova, A.; Kanapin, A.; Bankin, M.; Logachev, A.; Gretsova, M.; Rozhmina, T.; Samsonova, M. A Genomic Blueprint of Flax Fungal Parasite Fusarium oxysporum f. sp. lini. Int. J. Mol. Sci. 2021, 22, 2665. [Google Scholar] [CrossRef]
  33. Mat Razali, N.; Hisham, S.N.; Kumar, I.S.; Shukla, R.N.; Lee, M.; Abu Bakar, M.F.; Nadarajah, K. Comparative Genomics: Insights on the Pathogenicity and Lifestyle of Rhizoctonia solani. Int. J. Mol. Sci. 2021, 22, 2183. [Google Scholar] [CrossRef]
  34. Gonçalves, M.F.M.; Nunes, R.B.; Tilleman, L.; Van de Peer, Y.; Deforce, D.; Van Nieuwerburgh, F.; Esteves, A.C.; Alves, A. Dual RNA Sequencing of Vitis vinifera during Lasiodiplodia theobromae Infection Unveils Host–Pathogen Interactions. Int. J. Mol. Sci. 2019, 20, 6083. [Google Scholar] [CrossRef] [Green Version]
  35. Sangappillai, V.; Nadarajah, K. Fatty Acid Synthase Beta Dehydratase in the Lipid Biosynthesis Pathway Is Required for Conidiogenesis, Pigmentation and Appressorium Formation in Magnaporthe oryzae S6. Int. J. Mol. Sci. 2020, 21, 7224. [Google Scholar] [CrossRef]
  36. Li, M.; Li, C.; Jiang, K.; Li, K.; Zhang, J.; Sun, M.; Wu, G.; Qing, L. Characterization of Pathogenicity-Associated V2 Protein of Tobacco Curly Shoot Virus. Int. J. Mol. Sci. 2021, 22, 923. [Google Scholar] [CrossRef]
  37. Li, H.; Ying, X.; Shang, L.; Redfern, B.; Kypraios, N.; Xie, X.; Xu, F.; Wang, S.; Zhang, J.; Jian, H.; et al. Heterologous Expression of CLIBASIA_03915/CLIBASIA_04250 by Tobacco Mosaic Virus Resulted in Phloem Necrosis in the Senescent Leaves of Nicotiana benthamiana. Int. J. Mol. Sci. 2020, 21, 1414. [Google Scholar] [CrossRef] [Green Version]
  38. Pontarotti, P.; Paganini, J. COVID-19 Pandemic: Escape of Pathogenic Variants and MHC Evolution. Int. J. Mol. Sci. 2022, 23, 2665. [Google Scholar] [CrossRef]
  39. Lechuga, G.C.; Souza-Silva, F.; Sacramento, C.Q.; Trugilho, M.R.O.; Valente, R.H.; Napoleão-Pêgo, P.; Dias, S.S.G.; Fintelman-Rodrigues, N.; Temerozo, J.R.; Carels, N.; et al. SARS-CoV-2 Proteins Bind to Hemoglobin and Its Metabolites. Int. J. Mol. Sci. 2021, 22, 9035. [Google Scholar] [CrossRef]
  40. Chamberlain, N.; Ruban, M.; Mark, Z.F.; Bruno, S.R.; Kumar, A.; Chandrasekaran, R.; Souza De Lima, D.; Antos, D.; Nakada, E.M.; Alcorn, J.F.; et al. Protein Disulfide Isomerase A3 Regulates Influenza Neuraminidase Activity and Influenza Burden in the Lung. Int. J. Mol. Sci. 2022, 23, 1078. [Google Scholar] [CrossRef]
  41. Looi, K.; Larcombe, A.N.; Perks, K.L.; Berry, L.J.; Zosky, G.R.; Rigby, P.; Knight, D.A.; Kicic, A.; Stick, S.M. Previous Influenza Infection Exacerbates Allergen Specific Response and Impairs Airway Barrier Integrity in Pre-Sensitized Mice. Int. J. Mol. Sci. 2021, 22, 8790. [Google Scholar] [CrossRef] [PubMed]
  42. Diallo, I.; Ho, J.; Laffont, B.; Laugier, J.; Benmoussa, A.; Lambert, M.; Husseini, Z.; Soule, G.; Kozak, R.; Kobinger, G.P.; et al. Altered microRNA Transcriptome in Cultured Human Liver Cells upon Infection with Ebola Virus. Int. J. Mol. Sci. 2021, 22, 3792. [Google Scholar] [CrossRef] [PubMed]
  43. Dayer, G.; Masoom, M.L.; Togtema, M.; Zehbe, I. Virus–Host Protein–Protein Interactions between Human Papillomavirus 16 E6 A1 and D2/D3 Sub-Lineages: Variances and Similarities. Int. J. Mol. Sci. 2020, 21, 7980. [Google Scholar] [CrossRef]
  44. Yan, Q.; Liu, X.; Sun, Y.; Zeng, W.; Li, Y.; Zhao, F.; Wu, K.; Fan, S.; Zhao, M.; Chen, J.; et al. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. Int. J. Mol. Sci. 2022, 23, 3953. [Google Scholar] [CrossRef] [PubMed]
  45. Lan, J.; Zhang, R.; Yu, H.; Wang, J.; Xue, W.; Chen, J.; Lin, S.; Wang, Y.; Xie, Z.; Jiang, S. Quantitative Proteomic Analysis Uncovers the Mediation of Endoplasmic Reticulum Stress-Induced Autophagy in DHAV-1-Infected DEF Cells. Int. J. Mol. Sci. 2019, 20, 6160. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Burkovski, A. Host–Pathogen Interaction 3.0. Int. J. Mol. Sci. 2022, 23, 12811. https://doi.org/10.3390/ijms232112811

AMA Style

Burkovski A. Host–Pathogen Interaction 3.0. International Journal of Molecular Sciences. 2022; 23(21):12811. https://doi.org/10.3390/ijms232112811

Chicago/Turabian Style

Burkovski, Andreas. 2022. "Host–Pathogen Interaction 3.0" International Journal of Molecular Sciences 23, no. 21: 12811. https://doi.org/10.3390/ijms232112811

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop