Changes in the Metabolic Profile of Melatonin Synthesis-Related Indoles during Post-Embryonic Development of the Turkey Pineal Organ
Abstract
:1. Introduction
2. Results
2.1. Activities of Enzymes of the MLT Synthesis Pathway
2.1.1. Tryptophan Hydroxylase
2.1.2. Aromatic Acid Decarboxylase (AADC)
2.1.3. Arylalkylamine N-Acetyltransferase
2.1.4. Serotonin O-Methyltransferase (ASMT)
2.2. Indoles Related to Melatonin Synthesis Pathway
2.2.1. Tryptophan (TRP)
2.2.2. 5-Hydroxytryptophan (5-HTRP)
2.2.3. Serotonin (5-HT)
2.2.4. N-Acetylserotonin (NAS)
2.2.5. Melatonin
2.2.6. 5-Hydroxyindole Acetic Acid (5-HIAA) and 5-Hydroxytryptophol (5-HTOL)
2.2.7. 5-Methoxyindole Acetic Acid (5-MIAA) and 5-Methoxytryptophol (5-MTOL)
2.2.8. 5-Methoxytryptamine (5-MTAM)
3. Discussion
4. Materials and Methods
4.1. Birds and Experimental Design
4.2. Assay of Enzyme Activity and Indole Content
4.2.1. Sample Preparation
4.2.2. Content of Melatonin Synthesis-Related Indoles
4.2.3. Measurement of the Melatonin Synthesis Pathway Enzymes’ Activities
TPH Activity
AADC Activity
AA-NAT Activity
ASMT Activity
4.3. Assay of Protein Content
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-HIAA | 5-hydroxyindoleacetic acid |
5-HT | serotonin |
5-HTOL | 5-hydroxytryptophol |
5-HTRP | 5-hydroxytryptophan |
5-MIAA | 5-methoxyindoleacetic acid |
5-MTAM | 5-methoxytryptamine |
5-MTOL | 5-methoxytryptophol |
5-MTRP | 5-methoxytryptophan |
AADC | aromatic L-amino acid decarboxylase |
AA-NAT | arylalkylamine N-acetyltransferase |
ASMT | N-acetylserotonin O-methyltransferase |
HPLC | high-pressure liquid chromatography |
MLT | melatonin |
NAS | N-acetylserotonin |
TPH | tryptophan hydroxylase |
TRP | tryptophan |
References
- Reiter, R.J. Intrinsic rhythms of the pineal gland and associated hormone cycles in body fluids. Annu. Rev. Chronopharmacol. 1988, 4, 77–105. [Google Scholar]
- Attanasio, A.; Rager, K.; Gupta, D. Ontogeny of circadian rhythmicity of melatonin, serotonin, and N-acetylserotonin in humans. J. Pineal Res. 1986, 3, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Laakso, M.L.; Hätönen, A.A.T.; Mustanoja, S.M. Ontogeny of pineal melatonin rhythm in rats under 12:12 hr and 14:14 hr light: Dark conditions. J. Pineal Res. 1996, 21, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Attanasio, A.; Wake, K.; Gupta, D. Rhythm development in pineal and circulating serotonin, N-acetylserotonine, and melatonin in Syrian Hamsters. J. Pineal Res. 1989, 7, 45–54. [Google Scholar] [CrossRef]
- Waldhauser, F.; Kovács, C.S.; Reiter, E. Age-related changes in melatonin levels in humans and its potential consequences for sleep disorders. Exp. Gerontol. 1998, 33, 759–772. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Skene, D.J.; Arendt, J. Pchysiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol. Rep. 2009, 61, 383–410. [Google Scholar] [CrossRef]
- Tang, P.L.; Pang, S.F. The ontogeny of pineal and serum melatonin in male rats at mid-night and mid-dark. J. Neural Transm. 1988, 72, 43–53. [Google Scholar] [CrossRef]
- Pang, S.F.; Tang, F.; Tang, P.L. Negative correlation of age and the levels of pineal melatonin, pineal N-acetylserotonin, and serum melatonin in male rats. J. Exp. Zool. 1984, 229, 41–47. [Google Scholar] [CrossRef]
- Reiter, R.J.; Richardson, B.A.; Johnson, L.Y.; Ferguson, B.N.; Dinh, D.T. Pineal melatonin rhythm: Reduction in aging Syrian hamsters. Science 1980, 210, 1372–1373. [Google Scholar] [CrossRef]
- Pang, S.F.; Tang, P.L. Decreased serum and pineal concentrations of melatonin and N-acetylserotonin in aged male hamsters. Horm. Res. 1983, 17, 228–234. [Google Scholar] [CrossRef]
- Zeman, M.; Herichová, I. Circadian melatonin production develops faster in birds than in mammals. Gen. Comp. Endocrinol. 2011, 172, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Herichová, I.; Zeman, M.; Macková, M.; Griac, P. Rhythms of the pineal N-acetyltransferase mRNA and melatonin concentrations during embryonic and post-embryonic development in chicken. Neurosci. Lett. 2001, 298, 123–126. [Google Scholar] [CrossRef]
- Jin, E.; Jia, L.; Li, J.; Yang, G.; Wang, Z.; Cao, J.; Chen, Y. Effect of monochromatic light on melatonin secretion and arylalkylamine N-acetyltransferase mRNA expression in the retina and pineal gland of broilers. Anat. Rec. 2011, 294, 1233–1241. [Google Scholar] [CrossRef]
- Guo, Q.; Dong, Y.; Cao, J.; Wang, Z.; Zhang, Z.; Chen, Y. Developmental changes of melatonin receptor expression in the spleen of the chicken, Gallus domesticus. Acta Histochem. 2015, 117, 559–565. [Google Scholar] [CrossRef]
- Hanuszewska, M.; Prusik, M.; Lewczuk, B. Embryonic ontogeny of 5-hydroxyindoles and 5-methoxyindoles synthesis pathways in the goose pineal organ. Int. J. Mol. Sci. 2019, 20, 3948. [Google Scholar] [CrossRef] [PubMed]
- Paredes, S.D.; Terrón, M.P.; Cubero, J.; Valero, V.; Barriga, C.; Reiter, R.J. Comparative study of the activity/rest rhythms in young and old ringdove (Streptopelia risoria): Correlation with serum levels of melatonin and serotonin. Chronobiol. Int. 2006, 23, 779–793. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Lorenc, A.; Berezińska, M.; Vivien-Roels, B.; Pévet, P.; Skene, D.J. Diurnal and circadian rhythms in melatonin synthesis in the turkey pineal gland and retina. Gen. Comp. Endocrinol. 2006, 145, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Zawilska, J.B.; Lorenc, A.; Berezińska, M.; Vivien-Roels, B.; Pévet, P.; Skene, D.J. Daily oscillation in melatonin synthesis in the Turkey pineal gland and retina: Diurnal and circadian rhythms. Chronobiol. Int. 2006, 23, 341–350. [Google Scholar] [CrossRef]
- Prusik, M.; Lewczuk, B. Diurnal rhythm of plasma melatonin concentration in the domestic turkey and its regulation by light and endogenous oscillators. Animals 2020, 10, 678. [Google Scholar] [CrossRef]
- Prusik, M.; Lewczuk, B. Roles of direct photoreception and the internal circadian oscillator in the regulation of melatonin secretion in the pineal organ of the domestic turkey: A novel in vitro clock and calendar model. Int. J. Mol. Sci. 2019, 20, 4022. [Google Scholar] [CrossRef]
- Przybylska-Gornowicz, B.; Lewczuk, B.; Prusik, M.; Nowicki, M. Post-hatching development of the turkey pineal organ: Histological and immunohistochemical studies. Neuro Enocrinol. Lett. 2005, 26, 383–392. [Google Scholar]
- Petrusewicz-Kosińska, M.; Przybylska-Gornowicz, B.; Ziółkowska, N.; Martyniuk, K.; Lewczuk, B. Developmental morphology of the turkey pineal organ. Immunocytochemical and ultrastructural studies. Micron 2019, 122, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Petrusewicz-Kosińska, M.; Przybylska-Gornowicz, B.; Prusik, M.; Ziółkowska, N.; Lewczuk, B. Pinopsin and photoreception in the pineal organ of the domestic turkey during post hatching development. Micron 2019, 126, 102749. [Google Scholar] [CrossRef]
- Magdelaine, P.; Spiess, M.P.; Valceschini, E. Poultry meat consumption trends in Europe. World Poultry Sci. J. 2008, 64, 53–64. [Google Scholar] [CrossRef]
- Windhorst, H.-W. Changing regional patterns of turkey production and turkey meat trade. World Poultry Sci. J. 2006, 62, 97–114. [Google Scholar] [CrossRef]
- Siopes, T.D.; Underwood, H.A. Pineal gland and ocular influences on turkey breeder hens. 1. Reproductive performance. Poult. Sci. 1987, 66, 521–527. [Google Scholar] [CrossRef]
- Siopes, T.D. Pineal gland and ocular influences on turkey breeder hens. 2. Body weight, feed intake, and egg characteristics. Poult. Sci. 1987, 66, 528–534. [Google Scholar] [CrossRef]
- Denbow, D.M.; Leighton, A.T.; Hulet, R.M. Effect of light sources and light intensity on growth, performance, and behaviour of female turkeys. Br. Poult. Sci. 1990, 31, 439–443. [Google Scholar] [CrossRef]
- Classen, H.L.; Riddell, C.; Robinson, F.E.; Shand, P.J.; McCurdy, A.R. Effect of lighting treatment on the productivity, health, behaviour and sexual maturity of heavy male turkeys. Br. Poult. Sci. 1994, 35, 215–225. [Google Scholar] [CrossRef]
- Clark, W.D.; Classen, H.L. The effects of continuously or diurnally fed melatonin on broiler performance and health. Poult. Sci. 1995, 74, 1900–1904. [Google Scholar] [CrossRef]
- Rozenboim, I.; Biran, I.; Uni, Z.; Robinzon, B.; Halevy, O. The effect of monochromatic light on broiler growth and development. Poult. Sci. 1999, 78, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Rodenboog, H. Sodium, green, blue, cool or warm-white light? World Poult. 2001, 17, 22–23. [Google Scholar]
- El Halawani, M.F. Light intensity requirement for breeder hen turkeys. Gobbles 2009, 66, 6–7. [Google Scholar]
- Deep, A.; Schwean-Lardner, K.; Crowe, T.G.; Fancher, B.I.; Classen, H.L. Effect of light intensity on broiler production, processing characteristics and welfare. Poult. Sci. 2010, 89, 2326–2333. [Google Scholar] [CrossRef] [PubMed]
- Siopes, T.D. Initiation of egg production by turkey breeder hens: Sexual maturation and age at lighting. Poult. Sci. 2010, 89, 1490–1496. [Google Scholar] [CrossRef] [PubMed]
- Vollrath, L. The Pineal Organ. In Handbuch Der Mikroskopischen Anatomie Des Menschen VI/7; Springer: Berlin, Germany, 1981. [Google Scholar]
- Menaker, M.; Oksche, A. The avian pineal organ. Avian Biol. 1974, 4, 79–118. [Google Scholar]
- Csernus, V.; Becher, P.; Mess, B. Wavelength dependency of light-induced changes in rhythmic melatonin secretion from chicken pineal gland in vitro. Neuro Endocrinol. Lett. 1999, 20, 299–304. [Google Scholar]
- Ziółkowska, N.; Lewczuk, B.; Prusik, M. Diurnal and circadian variations in indole contents in the goose pineal gland. Chronobiol. Int. 2018, 25, 1–16. [Google Scholar] [CrossRef]
- Prusik, M.; Lewczuk, B.; Ziółkowska, N.; Przybylska-Gornowicz, B. Regulation of melatonin secretion in the pineal organ of the domestic duck—An in vitro study. Pol. J. Vet. Sci. 2015, 18, 635–644. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Berezińska, M.; Stasikowska, O.; Lorenc, A.; Skene, D.J.; Nowak, J.Z. Posthatching developmental changes in noradrenaline content in the chicken pineal gland. J. Pineal. Res. 2005, 38, 123–129. [Google Scholar] [CrossRef]
- Cassone, V.M.; Forsyth, A.M.; Woodlee, G.L. Hypothalamic regulation of circadian noradrenergic input to the chick pineal gland. J. Comp. Physiol. A 1990, 167, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Prusik, M.; Lewczuk, B. Regulation of melatonin secretion in the avian pineal gland. Med. Weter. 2008, 64, 617–736. (In polish) [Google Scholar]
- Lewczuk, B.; Ziółkowska, N.; Prusik, M.; Przybylska-Gornowicz, B. Diurnal profiles of melatonin synthesis-related indoles, catecholamines and their metabolites in the duck pineal organ. Int. J. Mol. Sci. 2014, 15, 12604–12630. [Google Scholar] [CrossRef] [PubMed]
- Martyniuk, K.; Hanuszewska, M.; Lewczuk, B. Metabolism of Melatonin Synthesis-Related Indoles in the Turkey Pineal Organ and Its Modification by Monochromatic Light. Int. J. Mol. Sci. 2020, 21, 9750. [Google Scholar] [CrossRef]
- Barbosa, R.; Scialfa, J.H.; Terra, I.M.; Cipolla-Neto, J.; Simonneaux, V.; Afeche, S.C. Tryptophan hydroxylase is modulated by L-type calcium channels in the rat pineal gland. Life Sci. 2008, 82, 529–535. [Google Scholar] [CrossRef]
- Rahman, M.K.; Nagatsu, T.; Nagatsu, I.; Iizuka, R.; Narabayashi, H. Aromatic L-Animo decarboxylase activity in brains from normal human subjects and from patients with extrapyramidal diseases. Biomed. Res. 1981, 2, 560–566. [Google Scholar] [CrossRef]
- Bradford, K.T.; Zawilska, J.; Iuvone, P.M. Arylalkylamine (serotonin) N-acetyltransferase assay using high-performance liquid chromatography with fluorescence or electrochemical detection of N-acetyltryptamine. Anal. Biochem. 1990, 184, 228–234. [Google Scholar]
- Itoh, M.T.; Hattori, A.; Sumi, Y. Hydroxyindole-O-methyltransferase activity assay using high-performance liquid chromatography with fluorometric detection: Determination of melatonin enzymatically formed from N-acetylserotonin and S-adenosyl-l-methionine. J. Chromatogr. 1997, 692, 217–221. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martyniuk, K.; Hanuszewska-Dominiak, M.; Lewczuk, B. Changes in the Metabolic Profile of Melatonin Synthesis-Related Indoles during Post-Embryonic Development of the Turkey Pineal Organ. Int. J. Mol. Sci. 2022, 23, 10872. https://doi.org/10.3390/ijms231810872
Martyniuk K, Hanuszewska-Dominiak M, Lewczuk B. Changes in the Metabolic Profile of Melatonin Synthesis-Related Indoles during Post-Embryonic Development of the Turkey Pineal Organ. International Journal of Molecular Sciences. 2022; 23(18):10872. https://doi.org/10.3390/ijms231810872
Chicago/Turabian StyleMartyniuk, Kamila, Maria Hanuszewska-Dominiak, and Bogdan Lewczuk. 2022. "Changes in the Metabolic Profile of Melatonin Synthesis-Related Indoles during Post-Embryonic Development of the Turkey Pineal Organ" International Journal of Molecular Sciences 23, no. 18: 10872. https://doi.org/10.3390/ijms231810872