Genetic Basis of ACTH-Secreting Adenomas
Abstract
:1. Introduction
2. Results
2.1. Somatic Driver Mutations
2.1.1. USP8
2.1.2. Other Driver Mutations
2.2. Evaluation of Somatic Mutations in Peculiar Settings
2.2.1. Pituitary Carcinoma
2.2.2. Nelson’s Syndrome
2.2.3. Silent Corticotrope Adenoma (SCA)
2.2.4. Crooke’s Cell Adenomas
2.3. Germline Mutations
2.3.1. Multiple Endocrine Neoplasia (MEN) 1
2.3.2. Multiple Endocrine Neoplasia (MEN) 2
2.3.3. Multiple Endocrine Neoplasia (MEN) 4
2.3.4. Carney Complex
2.3.5. 3P Association (3PA)
2.3.6. USP8-Related Syndrome
2.3.7. DICER1
2.3.8. Lynch Syndrome
2.3.9. Beckwith–Wiedemann Syndrome (BWS)
2.3.10. Tuberous Sclerosis Complex (TSC)
2.3.11. Non-Syndromic Germline Mutations: Familial Isolated Pituitary Adenoma (FIPA) and CDH23
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferriere, A.; Tabarin, A. Cushing’s Disease. Presse Med. 2021, 50, 104091. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.S.; Isidori, A.M.; Wat, W.Z.; Kaltsas, G.A.; Afshar, F.; Sabin, I.; Jenkins, P.J.; Monson, J.P.; Besser, G.M.; Grossman, A.B. Clinical and Biochemical Characteristics of Adrenocorticotropin-Secreting Macroadenomas. J. Clin. Endocrinol. Metab. 2005, 90, 4963–4969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paragliola, R.M.; Corsello, A.; Troiani, E.; Locantore, P.; Papi, G.; Donnini, G.; Pontecorvi, A.; Corsello, S.M.; Carrozza, C. Cortisol Circadian Rhythm and Jet-Lag Syndrome: Evaluation of Salivary Cortisol Rhythm in a Group of Eastward Travelers. Endocrine 2021, 73, 424–430. [Google Scholar] [CrossRef]
- Paragliola, R.M.; Locantore, P.; Pontecorvi, A.; Corsello, S.M. Pediatric Cushing’s Disease and Pituitary Incidentaloma: Is This a Real Challenge? Case Rep. Endocrinol. 2014, 2014, 851942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paragliola, R.M.; Corsello, A.; Locantore, P.; Papi, G.; Pontecorvi, A.; Corsello, S.M. Medical Approaches in Adrenocortical Carcinoma. Biomedicines 2020, 8, 551. [Google Scholar] [CrossRef] [PubMed]
- Paragliola, R.M.; Torino, F.; Papi, G.; Locantore, P.; Pontecorvi, A. Role of Mitotane in Adrenocortical Carcinoma—Review and State of the Art. Eur. Endocrinol. 2018, 14, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Kakihara, K.; Asamizu, K.; Moritsugu, K.; Kubo, M.; Kitaguchi, T.; Endo, A.; Kidera, A.; Ikeguchi, M.; Kato, A.; Komada, M.; et al. Molecular Basis of Ubiquitin-Specific Protease 8 Autoinhibition by the WW-like Domain. Commun. Biol. 2021, 4, 1272. [Google Scholar] [CrossRef]
- Ma, Z.-Y.; Song, Z.-J.; Chen, J.-H.; Wang, Y.-F.; Li, S.-Q.; Zhou, L.-F.; Mao, Y.; Li, Y.-M.; Hu, R.-G.; Zhang, Z.-Y.; et al. Recurrent Gain-of-Function USP8 Mutations in Cushing’s Disease. Cell Res. 2015, 25, 306–317. [Google Scholar] [CrossRef]
- Reincke, M.; Sbiera, S.; Hayakawa, A.; Theodoropoulou, M.; Osswald, A.; Beuschlein, F.; Meitinger, T.; Mizuno-Yamasaki, E.; Kawaguchi, K.; Saeki, Y.; et al. Mutations in the Deubiquitinase Gene USP8 Cause Cushing’s Disease. Nat. Genet. 2015, 47, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Treppiedi, D.; Barbieri, A.M.; Di Muro, G.; Marra, G.; Mangili, F.; Catalano, R.; Esposito, E.; Ferrante, E.; Serban, A.L.; Locatelli, M.; et al. Genetic Profiling of a Cohort of Italian Patients with ACTH-Secreting Pituitary Tumors and Characterization of a Novel USP8 Gene Variant. Cancers 2021, 13, 4022. [Google Scholar] [CrossRef]
- Fukuoka, H.; Shichi, H.; Yamamoto, M.; Takahashi, Y. The Mechanisms Underlying Autonomous Adrenocorticotropic Hormone Secretion in Cushing’s Disease. Int. J. Mol. Sci. 2020, 21, 9132. [Google Scholar] [CrossRef]
- Perez-Rivas, L.G.; Theodoropoulou, M.; Ferraù, F.; Nusser, C.; Kawaguchi, K.; Stratakis, C.A.; Faucz, F.R.; Wildemberg, L.E.; Assié, G.; Beschorner, R.; et al. The Gene of the Ubiquitin-Specific Protease 8 Is Frequently Mutated in Adenomas Causing Cushing’s Disease. J. Clin. Endocrinol. Metab. 2015, 100, E997–E1004. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, D.; De Martino, M.; Arra, C.; Fusco, A. Emerging Role of USP8, HMGA, and Non-Coding RNAs in Pituitary Tumorigenesis. Cancers 2019, 11, 1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jian, F.; Cao, Y.; Bian, L.; Sun, Q. USP8: A Novel Therapeutic Target for Cushing’s Disease. Endocrine 2015, 50, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Sesta, A.; Cassarino, M.F.; Terreni, M.; Ambrogio, A.G.; Libera, L.; Bardelli, D.; Lasio, G.; Losa, M.; Pecori Giraldi, F. Ubiquitin-Specific Protease 8 Mutant Corticotrope Adenomas Present Unique Secretory and Molecular Features and Shed Light on the Role of Ubiquitylation on ACTH Processing. Neuroendocrinology 2020, 110, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.S.; Camargo, R.C.; Coeli-Lacchini, F.B.; Saggioro, F.P.; Moreira, A.C.; de Castro, M. USP8 Mutations and Cell Cycle Regulation in Corticotroph Adenomas. Horm. Metab. Res. 2020, 52, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sbiera, S.; Deutschbein, T.; Weigand, I.; Reincke, M.; Fassnacht, M.; Allolio, B. The New Molecular Landscape of Cushing’s Disease. Trends Endocrinol. Metab. 2015, 26, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Wanichi, I.Q.; de Paula Mariani, B.M.; Frassetto, F.P.; Siqueira, S.A.C.; de Castro Musolino, N.R.; Cunha-Neto, M.B.C.; Ochman, G.; Cescato, V.A.S.; Machado, M.C.; Trarbach, E.B.; et al. Cushing’s Disease Due to Somatic USP8 Mutations: A Systematic Review and Meta-Analysis. Pituitary 2019, 22, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Theodoropoulou, M.; Arzberger, T.; Gruebler, Y.; Jaffrain-Rea, M.L.; Schlegel, J.; Schaaf, L.; Petrangeli, E.; Losa, M.; Stalla, G.K.; Pagotto, U. Expression of Epidermal Growth Factor Receptor in Neoplastic Pituitary Cells: Evidence for a Role in Corticotropinoma Cells. J. Endocrinol. 2004, 183, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Fukuoka, H.; Cooper, O.; Ben-Shlomo, A.; Mamelak, A.; Ren, S.-G.; Bruyette, D.; Melmed, S. EGFR as a Therapeutic Target for Human, Canine, and Mouse ACTH-Secreting Pituitary Adenomas. J. Clin. Investig. 2011, 121, 4712–4721. [Google Scholar] [CrossRef] [Green Version]
- Araki, T.; Liu, X.; Kameda, H.; Tone, Y.; Fukuoka, H.; Tone, M.; Melmed, S. EGFR Induces E2F1-Mediated Corticotroph Tumorigenesis. J. Endocr. Soc. 2017, 1, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Ren, S.; Wang, J.; Lv, T.; Sun, L.; Du, G. Bexarotene Combined with Lapatinib for the Treatment of Cushing’s Disease: Evidence Based on Drug Repositioning and Experimental Confirmation. Signal Transduct. Target. Ther. 2020, 5, 175. [Google Scholar] [CrossRef] [PubMed]
- Uzilov, A.V.; Cheesman, K.C.; Fink, M.Y.; Newman, L.C.; Pandya, C.; Lalazar, Y.; Hefti, M.; Fowkes, M.; Deikus, G.; Lau, C.Y.; et al. Identification of a Novel RASD1 Somatic Mutation in a USP8-Mutated Corticotroph Adenoma. Mol. Case Stud. 2017, 3, a001602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foradori, C.D.; Mackay, L.; Huang, C.-C.J.; Kemppainen, R.J. Expression of Rasd1 in Mouse Endocrine Pituitary Cells and Its Response to Dexamethasone. Stress 2021, 24, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Weigand, I.; Knobloch, L.; Flitsch, J.; Saeger, W.; Monoranu, C.M.; Höfner, K.; Herterich, S.; Rotermund, R.; Ronchi, C.L.; Buchfelder, M.; et al. Impact of USP8 Gene Mutations on Protein Deregulation in Cushing Disease. J. Clin. Endocrinol. Metab. 2019, 104, 2535–2546. [Google Scholar] [CrossRef] [PubMed]
- Neou, M.; Villa, C.; Armignacco, R.; Jouinot, A.; Raffin-Sanson, M.-L.; Septier, A.; Letourneur, F.; Diry, S.; Diedisheim, M.; Izac, B.; et al. Pangenomic Classification of Pituitary Neuroendocrine Tumors. Cancer Cell 2020, 37, 123–134.e5. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Jia, H.; Fan, J.; Liu, Y.; Jia, J. USP8 Promotes Smoothened Signaling by Preventing Its Ubiquitination and Changing Its Subcellular Localization. PLoS Biol. 2012, 10, e1001238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bujko, M.; Kober, P.; Boresowicz, J.; Rusetska, N.; Zeber-Lubecka, N.; Paziewska, A.; Pekul, M.; Zielinski, G.; Styk, A.; Kunicki, J.; et al. Differential MicroRNA Expression in USP8-Mutated and Wild-Type Corticotroph Pituitary Tumors Reflect the Difference in Protein Ubiquitination Processes. J. Clin. Med. 2021, 10, 375. [Google Scholar] [CrossRef]
- Uzilov, A.V.; Taik, P.; Cheesman, K.C.; Javanmard, P.; Ying, K.; Roehnelt, A.; Wang, H.; Fink, M.Y.; Lau, C.Y.; Moe, A.S.; et al. USP8 and TP53 Drivers Are Associated with CNV in a Corticotroph Adenoma Cohort Enriched for Aggressive Tumors. J. Clin. Endocrinol. Metab. 2021, 106, 826–842. [Google Scholar] [CrossRef]
- Song, Z.-J.; Reitman, Z.J.; Ma, Z.-Y.; Chen, J.-H.; Zhang, Q.-L.; Shou, X.-F.; Huang, C.-X.; Wang, Y.-F.; Li, S.-Q.; Mao, Y.; et al. The Genome-Wide Mutational Landscape of Pituitary Adenomas. Cell Res. 2016, 26, 1255–1259. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Inoshita, N.; Kawaguchi, K.; Ibrahim Ardisasmita, A.; Suzuki, H.; Fukuhara, N.; Okada, M.; Nishioka, H.; Takeuchi, Y.; Komada, M.; et al. The USP8 Mutational Status May Predict Drug Susceptibility in Corticotroph Adenomas of Cushing’s Disease. Eur. J. Endocrinol. 2016, 174, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Faucz, F.R.; Tirosh, A.; Tatsi, C.; Berthon, A.; Hernández-Ramírez, L.C.; Settas, N.; Angelousi, A.; Correa, R.; Papadakis, G.Z.; Chittiboina, P.; et al. Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease. J. Clin. Endocrinol. Metab. 2017, 102, 2836–2843. [Google Scholar] [CrossRef] [PubMed]
- Albani, A.; Pérez-Rivas, L.G.; Dimopoulou, C.; Zopp, S.; Colón-Bolea, P.; Roeber, S.; Honegger, J.; Flitsch, J.; Rachinger, W.; Buchfelder, M.; et al. The USP8 Mutational Status May Predict Long-Term Remission in Patients with Cushing’s Disease. Clin. Endocrinol. 2018, 89, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Losa, M.; Mortini, P.; Pagnano, A.; Detomas, M.; Cassarino, M.F.; Pecori Giraldi, F. Clinical Characteristics and Surgical Outcome in USP8-Mutated Human Adrenocorticotropic Hormone-Secreting Pituitary Adenomas. Endocrine 2019, 63, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.S.; Murari, K.; Gossmann, M.; Mahajan, A.; Erson-Omay, Z.; Manes, R.P.; Omay, S.B. Molecular Diagnosis and Extracranial Extension in Cushing Disease. JAMA Otolaryngol. Neck Surg. 2020, 146, 865. [Google Scholar] [CrossRef] [PubMed]
- Pasternak-Pietrzak, K.; Faucz, F.R.; Stratakis, C.A.; Moszczyńska, E.; Roszkowski, M.; Grajkowska, W.; Pronicki, M.; Szalecki, M. Is There a Common Cause for Paediatric Cushing’s Disease? Endokrynol. Pol. 2021, 72, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.; Persky, R.; Stegemann, R.; Hernández-Ramírez, L.C.; Zeltser, D.; Lodish, M.B.; Chen, A.; Keil, M.F.; Tatsi, C.; Faucz, F.R.; et al. Germline USP8 Mutation Associated with Pediatric Cushing Disease and Other Clinical Features: A New Syndrome. J. Clin. Endocrinol. Metab. 2019, 104, 4676–4682. [Google Scholar] [CrossRef] [PubMed]
- Sbiera, S.; Kunz, M.; Weigand, I.; Deutschbein, T.; Dandekar, T.; Fassnacht, M. The New Genetic Landscape of Cushing’s Disease: Deubiquitinases in the Spotlight. Cancers 2019, 11, 1761. [Google Scholar] [CrossRef] [Green Version]
- Abraham, A.P.; Pai, R.; Beno, D.L.; Chacko, G.; Asha, H.S.; Rajaratnam, S.; Kapoor, N.; Thomas, N.; Chacko, A.G. USP8, USP48, and BRAF Mutations Differ in Their Genotype-Phenotype Correlation in Asian Indian Patients with Cushing’s Disease. Endocrine 2022, 75, 549–559. [Google Scholar] [CrossRef]
- Komander, D.; Clague, M.J.; Urbé, S. Breaking the Chains: Structure and Function of the Deubiquitinases. Nat. Rev. Mol. Cell Biol. 2009, 10, 550–563. [Google Scholar] [CrossRef]
- Sbiera, S.; Perez-Rivas, L.G.; Taranets, L.; Weigand, I.; Flitsch, J.; Graf, E.; Monoranu, C.-M.; Saeger, W.; Hagel, C.; Honegger, J.; et al. Driver Mutations in USP8 Wild-Type Cushing’s Disease. Neuro-Oncology 2019, 21, 1273–1283. [Google Scholar] [CrossRef]
- Chen, J.; Jian, X.; Deng, S.; Ma, Z.; Shou, X.; Shen, Y.; Zhang, Q.; Song, Z.; Li, Z.; Peng, H.; et al. Identification of Recurrent USP48 and BRAF Mutations in Cushing’s Disease. Nat. Commun. 2018, 9, 3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, J.; Jian, F.; Jiang, H.; Sun, Y.; Pan, S.; Gu, C.; Chen, X.; Wang, W.; Ning, G.; Bian, L.; et al. Decreased Expression of SFRP2 Promotes Development of the Pituitary Corticotroph Adenoma by Upregulating Wnt Signaling. Int. J. Oncol. 2018, 52, 1934–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanem, A.; Schweitzer, K.; Naumann, M. Catalytic Domain of Deubiquitinylase USP48 Directs Interaction with Rel Homology Domain of Nuclear Factor KappaB Transcription Factor RelA. Mol. Biol. Rep. 2019, 46, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Tanizaki, Y.; Jin, L.; Scheithauer, B.W.; Kovacs, K.; Roncaroli, F.; Lloyd, R.V. P53 Gene Mutations in Pituitary Carcinomas. Endocr. Pathol. 2007, 18, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, S.-T.; Usui, T.; Sano, T.; Iogawa, H.; Hagiwara, H.; Tamanaha, T.; Tagami, T.; Naruse, M.; Hojo, M.; Takahashi, J.A.; et al. P53 Gene Mutation in an Atypical Corticotroph Adenoma with Cushing’s Disease. Clin. Endocrinol. 2009, 70, 656–657. [Google Scholar] [CrossRef]
- Zhang, D.; Du, L.; Heaney, A.P. Testicular Receptor-4: Novel Regulator of Glucocorticoid Resistance. J. Clin. Endocrinol. Metab. 2016, 101, 3123–3133. [Google Scholar] [CrossRef] [Green Version]
- Bilodeau, S.; Vallette-Kasic, S.; Gauthier, Y.; Figarella-Branger, D.; Brue, T.; Berthelet, F.; Lacroix, A.; Batista, D.; Stratakis, C.; Hanson, J.; et al. Role of Brg1 and HDAC2 in GR Trans-Repression of the Pituitary POMC Gene and Misexpression in Cushing Disease. Genes Dev. 2006, 20, 2871–2886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paragliola, R.M.; Costella, A.; Corsello, A.; Urbani, A.; Concolino, P. A Novel Pathogenic Variant in the N-Terminal Domain of the Glucocorticoid Receptor, Causing Glucocorticoid Resistance. Mol. Diagn. Ther. 2020, 24, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Liu, Y.; Lu, L.; Gong, F.; Wang, L.; Duan, L.; Yao, Y.; Wang, R.; Chen, S.; Mao, X.; et al. Effect of 3 NR3C1 Mutations in the Pathogenesis of Pituitary ACTH Adenoma. Endocrinology 2021, 162, bqab167. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, L.L.S.; Franco, O.L.; Alencar, S.A.; Porto, W.F. Deciphering the Structural Basis for Glucocorticoid Resistance Caused by Missense Mutations in the Ligand Binding Domain of Glucocorticoid Receptor. J. Mol. Graph. Model. 2019, 92, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Theodoropoulou, M. Glucocorticoid Receptors Are Making a Comeback in Corticotroph Tumorigenesis. Endocrinology 2022, 163, bqab257. [Google Scholar] [CrossRef] [PubMed]
- Roussel-Gervais, A.; Couture, C.; Langlais, D.; Takayasu, S.; Balsalobre, A.; Rueda, B.R.; Zukerberg, L.R.; Figarella-Branger, D.; Brue, T.; Drouin, J. The Cables1 Gene in Glucocorticoid Regulation of Pituitary Corticotrope Growth and Cushing Disease. J. Clin. Endocrinol. Metab. 2016, 101, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Park, H.R.; Du, Y.; Li, Z.; Cheng, K.; Sun, S.-Y.; Li, Z.; Fu, H.; Khuri, F.R. Cables1 Complex Couples Survival Signaling to the Cell Death Machinery. Cancer Res. 2015, 75, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Kageyama, K.; Asari, Y.; Sugimoto, Y.; Niioka, K.; Daimon, M. Ubiquitin-Specific Protease 8 Inhibitor Suppresses Adrenocorticotropic Hormone Production and Corticotroph Tumor Cell Proliferation. Endocr. J. 2020, 67, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Ramírez, L.C.; Gam, R.; Valdés, N.; Lodish, M.B.; Pankratz, N.; Balsalobre, A.; Gauthier, Y.; Faucz, F.R.; Trivellin, G.; Chittiboina, P.; et al. Loss-of-Function Mutations in the CABLES1 Gene Are a Novel Cause of Cushing’s Disease. Endocr. Relat. Cancer 2017, 24, 379–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salpea, P.; Stratakis, C.A. Carney Complex and McCune Albright Syndrome: An Overview of Clinical Manifestations and Human Molecular Genetics. Mol. Cell. Endocrinol. 2014, 386, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carney, J.A.; Young, W.F.; Stratakis, C.A. Primary Bimorphic Adrenocortical Disease. Am. J. Surg. Pathol. 2011, 35, 1311–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WILLIAMSON, E.A.; INCE, P.G.; HARRISON, D.; KENDALL-TAYLOR, P.; HARRIS, P.E. G-Protein Mutations in Human Pituitary Adrenocorticotrophic Hormone-Secreting Adenomas. Eur. J. Clin. Investig. 1995, 25, 128–131. [Google Scholar] [CrossRef]
- Riminucci, M. An R201H Activating Mutation of the GNAS1 (Gsalpha) Gene in a Corticotroph Pituitary Adenoma. Mol. Pathol. 2002, 55, 58–60. [Google Scholar] [CrossRef]
- Yamamoto, M.; Nakao, T.; Ogawa, W.; Fukuoka, H. Aggressive Cushing’s Disease: Molecular Pathology and Its Therapeutic Approach. Front. Endocrinol. 2021, 12, 650791. [Google Scholar] [CrossRef] [PubMed]
- Casar-Borota, O.; Boldt, H.B.; Engström, B.E.; Andersen, M.S.; Baussart, B.; Bengtsson, D.; Berinder, K.; Ekman, B.; Feldt-Rasmussen, U.; Höybye, C.; et al. Corticotroph Aggressive Pituitary Tumors and Carcinomas Frequently Harbor ATRX Mutations. J. Clin. Endocrinol. Metab. 2021, 106, e1183–e1194. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, D.; Joost, P.; Aravidis, C.; Askmalm Stenmark, M.; Backman, A.-S.; Melin, B.; von Salomé, J.; Zagoras, T.; Gebre-Medhin, S.; Burman, P. Corticotroph Pituitary Carcinoma in a Patient with Lynch Syndrome (LS) and Pituitary Tumors in a Nationwide LS Cohort. J. Clin. Endocrinol. Metab. 2017, 102, 3928–3932. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.L.; Jonsson, P.; Tabar, V.; Yang, T.J.; Cuaron, J.; Beal, K.; Cohen, M.; Postow, M.; Rosenblum, M.; Shia, J.; et al. Marked Response of a Hypermutated ACTH-Secreting Pituitary Carcinoma to Ipilimumab and Nivolumab. J. Clin. Endocrinol. Metab. 2018, 103, 3925–3930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karl, M.; Von Wichert, G.; Kempter, E.; Katz, D.A.; Reincke, M.; Mönig, H.; Ali, I.U.; Stratakis, C.A.; Oldfield, E.H.; Chrousos, G.P.; et al. Nelson’s Syndrome Associated with a Somatic Frame Shift Mutation in the Glucocorticoid Receptor Gene. J. Clin. Endocrinol. Metab. 1996, 81, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Rivas, L.G.; Theodoropoulou, M.; Puar, T.H.; Fazel, J.; Stieg, M.R.; Ferraù, F.; Assié, G.; Gadelha, M.R.; Deutschbein, T.; Fragoso, M.C.; et al. Somatic USP8 Mutations Are Frequent Events in Corticotroph Tumor Progression Causing Nelson’s Tumor. Eur. J. Endocrinol. 2018, 178, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Fountas, A.; Lavrentaki, A.; Subramanian, A.; Toulis, K.A.; Nirantharakumar, K.; Karavitaki, N. Recurrence in Silent Corticotroph Adenomas after Primary Treatment: A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2018, 104, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, A.; Cooper, O. Silent Corticotroph Adenomas. Pituitary 2018, 21, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Eieland, A.K.; Normann, K.R.; Sundaram, A.Y.M.; Nyman, T.A.; Øystese, K.A.B.; Lekva, T.; Berg, J.P.; Bollerslev, J.; Olarescu, N.C. Distinct Pattern of Endoplasmic Reticulum Protein Processing and Extracellular Matrix Proteins in Functioning and Silent Corticotroph Pituitary Adenomas. Cancers 2020, 12, 2980. [Google Scholar] [CrossRef]
- Horvath, E.; Kovacs, K.; Lloyd, R.V. Pars Intermedia of the Human Pituitary Revisited: Morphologic Aspects and Frequency of Hyperplasia of POMC-Peptide Immunoreactive Cells. Endocr. Pathol. 1999, 10, 55–64. [Google Scholar] [CrossRef]
- Tani, Y.; Inoshita, N.; Sugiyama, T.; Kato, M.; Yamada, S.; Shichiri, M.; Hirata, Y. Upregulation of CDKN2A and Suppression of Cyclin D1 Gene Expressions in ACTH-Secreting Pituitary Adenomas. Eur. J. Endocrinol. 2010, 163, 523–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bujko, M.; Kober, P.; Boresowicz, J.; Rusetska, N.; Paziewska, A.; Dąbrowska, M.; Piaścik, A.; Pękul, M.; Zieliński, G.; Kunicki, J.; et al. USP8 Mutations in Corticotroph Adenomas Determine a Distinct Gene Expression Profile Irrespective of Functional Tumour Status. Eur. J. Endocrinol. 2019, 181, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Raverot, G.; Wierinckx, A.; Jouanneau, E.; Auger, C.; Borson-Chazot, F.; Lachuer, J.; Pugeat, M.; Trouillas, J. Clinical, Hormonal and Molecular Characterization of Pituitary ACTH Adenomas without (Silent Corticotroph Adenomas) and with Cushing’s Disease. Eur. J. Endocrinol. 2010, 163, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dworakowska, D.; Grossman, A.B. The Molecular Pathogenesis of Corticotroph Tumours. Eur. J. Clin. Investig. 2012, 42, 665–676. [Google Scholar] [CrossRef]
- Wang, E.L.; Qian, Z.R.; Rahman, M.M.; Yoshimoto, K.; Yamada, S.; Kudo, E.; Sano, T. Increased Expression of HMGA1 Correlates with Tumour Invasiveness and Proliferation in Human Pituitary Adenomas. Histopathology 2010, 56, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Giraldi, E.A.; Neill, S.G.; Mendoza, P.; Saindane, A.; Oyesiku, N.M.; Ioachimescu, A.G. Functioning Crooke Cell Adenomas: Case Series and Literature Review. World Neurosurg. 2022, 158, e754–e765. [Google Scholar] [CrossRef] [PubMed]
- Newey, P.J.; Newell-Price, J. MEN1 Surveillance Guidelines: Time to (Re)Think? J. Endocr. Soc. 2022, 6, bvac001. [Google Scholar] [CrossRef]
- Thakker, R.V.; Newey, P.J.; Walls, G.V.; Bilezikian, J.; Dralle, H.; Ebeling, P.R.; Melmed, S.; Sakurai, A.; Tonelli, F.; Brandi, M.L. Clinical Practice Guidelines for Multiple Endocrine Neoplasia Type 1 (MEN1). J. Clin. Endocrinol. Metab. 2012, 97, 2990–3011. [Google Scholar] [CrossRef] [PubMed]
- Giusti, F.; Cianferotti, L.; Boaretto, F.; Cetani, F.; Cioppi, F.; Colao, A.; Davì, M.V.; Faggiano, A.; Fanciulli, G.; Ferolla, P.; et al. Multiple Endocrine Neoplasia Syndrome Type 1: Institution, Management, and Data Analysis of a Nationwide Multicenter Patient Database. Endocrine 2017, 58, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Vergès, B.; Boureille, F.; Goudet, P.; Murat, A.; Beckers, A.; Sassolas, G.; Cougard, P.; Chambe, B.; Montvernay, C.; Calender, A. Pituitary Disease in MEN Type 1 (MEN1): Data from the France-Belgium MEN1 Multicenter Study. J. Clin. Endocrinol. Metab. 2002, 87, 457–465. [Google Scholar] [CrossRef]
- Makri, A.; Bonella, M.B.; Keil, M.F.; Hernandez-Ramirez, L.; Paluch, G.; Tirosh, A.; Saldarriaga, C.; Chittiboina, P.; Marx, S.J.; Stratakis, C.A.; et al. Children with MEN1 Gene Mutations May Present First (and at a Young Age) with Cushing Disease. Clin. Endocrinol. 2018, 89, 437–443. [Google Scholar] [CrossRef]
- Kruljac, I.; Dabelić, N.; Marjan, D.; Blaslov, K.; Perić, B.; Mirošević, G.; Vagić, D.; Vrkljan, M. Cushing’s Disease in a Patient with MEN 2B Syndrome. Am. J. Med. 2020, 133, e46–e47. [Google Scholar] [CrossRef] [PubMed]
- Naziat, A.; Karavitaki, N.; Thakker, R.; Ansorge, O.; Sadler, G.; Gleeson, F.; Cranston, T.; McCormack, A.; Grossman, A.B.; Shine, B. Confusing Genes: A Patient with MEN2A and Cushing’s Disease. Clin. Endocrinol. 2013, 78, 966–968. [Google Scholar] [CrossRef] [PubMed]
- Ezzat, T.; Paramesawaran, R.; Phillips, B.; Sadler, G. MEN 2 Syndrome Masquerading as MEN 1. Ann. R. Coll. Surg. Engl. 2012, 94, 206–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasturi, K.; Fernandes, L.; Quezado, M.; Eid, M.; Marcus, L.; Chittiboina, P.; Rappaport, M.; Stratakis, C.A.; Widemann, B.; Lodish, M. Cushing Disease in a Patient with Multiple Endocrine Neoplasia Type 2B. J. Clin. Transl. Endocrinol. Case Rep. 2017, 4, 1–4. [Google Scholar] [CrossRef]
- McDonnell, J.E.; Gild, M.L.; Clifton-Bligh, R.J.; Robinson, B.G. Multiple Endocrine Neoplasia: An Update. Intern. Med. J. 2019, 49, 954–961. [Google Scholar] [CrossRef]
- Srirangam Nadhamuni, V.; Korbonits, M. Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms. Endocr. Rev. 2020, 41, 821–846. [Google Scholar] [CrossRef] [Green Version]
- Pellegata, N.S.; Quintanilla-Martinez, L.; Siggelkow, H.; Samson, E.; Bink, K.; Höfler, H.; Fend, F.; Graw, J.; Atkinson, M.J. Germ-Line Mutations in P27 Kip1 Cause a Multiple Endocrine Neoplasia Syndrome in Rats and Humans. Proc. Natl. Acad. Sci. USA 2006, 103, 15558–15563. [Google Scholar] [CrossRef] [Green Version]
- Georgitsi, M.; Raitila, A.; Karhu, A.; van der Luijt, R.B.; Aalfs, C.M.; Sane, T.; Vierimaa, O.; Mäkinen, M.J.; Tuppurainen, K.; Paschke, R.; et al. Germline CDKN1B/P27Kip1 Mutation in Multiple Endocrine Neoplasia. J. Clin. Endocrinol. Metab. 2007, 92, 3321–3325. [Google Scholar] [CrossRef] [Green Version]
- Igreja, S.; Chahal, H.S.; Akker, S.A.; Gueorguiev, M.; Popovic, V.; Damjanovic, S.; Burman, P.; Wass, J.A.; Quinton, R.; Grossman, A.B.; et al. Assessment of P27 (Cyclin-Dependent Kinase Inhibitor 1B) and Aryl Hydrocarbon Receptor-Interacting Protein (AIP) Genes in Multiple Endocrine Neoplasia (MEN1) Syndrome Patients without Any Detectable MEN1 Gene Mutations. Clin. Endocrinol. 2009, 70, 259–264. [Google Scholar] [CrossRef]
- Stratakis, C.; Tichomirowa, M.; Boikos, S.; Azevedo, M.; Lodish, M.; Martari, M.; Verma, S.; Daly, A.; Raygada, M.; Keil, M.; et al. The Role of Germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C Mutations in Causing Pituitary Adenomas in a Large Cohort of Children, Adolescents, and Patients with Genetic Syndromes. Clin. Genet. 2010, 78, 457–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, S.K.; Mateo, C.M.; Marx, S.J. Rare Germline Mutations in Cyclin-Dependent Kinase Inhibitor Genes in Multiple Endocrine Neoplasia Type 1 and Related States. J. Clin. Endocrinol. Metab. 2009, 94, 1826–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falchetti, A.; Brandi, M.L. Multiple Endocrine Neoplasia Type I Variants and Phenocopies: More than a Nosological Issue? J. Clin. Endocrinol. Metab. 2009, 94, 1518–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chasseloup, F.; Pankratz, N.; Lane, J.; Faucz, F.R.; Keil, M.F.; Chittiboina, P.; Kay, D.M.; Hussein Tayeb, T.; Stratakis, C.A.; Mills, J.L.; et al. Germline CDKN1B Loss-of-Function Variants Cause Pediatric Cushing’s Disease with or without an MEN4 Phenotype. J. Clin. Endocrinol. Metab. 2020, 105, 1983–2005. [Google Scholar] [CrossRef] [PubMed]
- Bouys, L.; Bertherat, J. MANAGEMENT Of ENDOCRINE DISEASE: Carney complex: Clinical and genetic update 20 years after the identification of the CNC1 (PRKAR1A) Gene. Eur. J. Endocrinol. 2021, 184, R99–R109. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ramírez, L.C.; Tatsi, C.; Lodish, M.B.; Faucz, F.R.; Pankratz, N.; Chittiboina, P.; Lane, J.; Kay, D.M.; Valdés, N.; Dimopoulos, A.; et al. Corticotropinoma as a Component of Carney Complex. J. Endocr. Soc. 2017, 1, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, F.W.; Winhofer, Y.; Iacovazzo, D.; Korbonits, M.; Wolfsberger, S.; Knosp, E.; Trautinger, F.; Höftberger, R.; Krebs, M.; Luger, A.; et al. PRKAR1A Mutation Causing Pituitary-Dependent Cushing Disease in a Patient with Carney Complex. Eur. J. Endocrinol. 2017, 177, K7–K12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xekouki, P.; Szarek, E.; Bullova, P.; Giubellino, A.; Quezado, M.; Mastroyannis, S.A.; Mastorakos, P.; Wassif, C.A.; Raygada, M.; Rentia, N.; et al. Pituitary Adenoma with Paraganglioma/Pheochromocytoma (3PAs) and Succinate Dehydrogenase Defects in Humans and Mice. J. Clin. Endocrinol. Metab. 2015, 100, E710–E719. [Google Scholar] [CrossRef]
- Solarski, M.; Rotondo, F.; Foulkes, W.D.; Priest, J.R.; Syro, L.V.; Butz, H.; Cusimano, M.D.; Kovacs, K. DICER1 Gene Mutations in Endocrine Tumors. Endocr. Relat. Cancer 2018, 25, R197–R208. [Google Scholar] [CrossRef]
- de Kock, L.; Sabbaghian, N.; Plourde, F.; Srivastava, A.; Weber, E.; Bouron-Dal Soglio, D.; Hamel, N.; Choi, J.H.; Park, S.-H.; Deal, C.L.; et al. Pituitary Blastoma: A Pathognomonic Feature of Germ-Line DICER1 Mutations. Acta Neuropathol. 2014, 128, 111–122. [Google Scholar] [CrossRef]
- Sahakitrungruang, T.; Srichomthong, C.; Pornkunwilai, S.; Amornfa, J.; Shuangshoti, S.; Kulawonganunchai, S.; Suphapeetiporn, K.; Shotelersuk, V. Germline and Somatic DICER1 Mutations in a Pituitary Blastoma Causing Infantile-Onset Cushing’s Disease. J. Clin. Endocrinol. Metab. 2014, 99, E1487–E1492. [Google Scholar] [CrossRef] [Green Version]
- Martínez de LaPiscina, I.; Hernández-Ramírez, L.C.; Portillo, N.; Gómez-Gila, A.L.; Urrutia, I.; Martínez-Salazar, R.; García-Castaño, A.; Aguayo, A.; Rica, I.; Gaztambide, S.; et al. Rare Germline DICER1 Variants in Pediatric Patients with Cushing’s Disease: What Is Their Role? Front. Endocrinol. 2020, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Uraki, S.; Ariyasu, H.; Doi, A.; Furuta, H.; Nishi, M.; Sugano, K.; Inoshita, N.; Nakao, N.; Yamada, S.; Akamizu, T. Atypical Pituitary Adenoma with MEN1 Somatic Mutation Associated with Abnormalities of DNA Mismatch Repair Genes; MLH1 Germline Mutation and MSH6 Somatic Mutation. Endocr. J. 2017, 64, 895–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brioude, F.; Nicolas, C.; Marey, I.; Gaillard, S.; Bernier, M.; Das Neves, C.; Le Bouc, Y.; Touraine, P.; Netchine, I. Hypercortisolism Due to a Pituitary Adenoma Associated with Beckwith-Wiedemann Syndrome. Horm. Res. Paediatr. 2016, 86, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Tatsi, C.; Flippo, C.; Stratakis, C.A. Cushing Syndrome: Old and New Genes. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101418. [Google Scholar] [CrossRef]
- Tigas, S.; Carroll, P.V.; Jones, R.; Bingham, E.; Russell-Jones, D.; Powell, M.; Scobie, I.N. Simultaneous Cushing’s Disease and Tuberous Sclerosis; a Potential Role for TSC in Pituitary Ontogeny. Clin. Endocrinol. 2005, 63, 694–695. [Google Scholar] [CrossRef] [PubMed]
- Nandagopal, R.; Vortmeyer, A.; Oldfield, E.H.; Keil, M.F.; Stratakis, C.A. Cushing’s Syndrome Due to a Pituitary Corticotropinoma in a Child with Tuberous Sclerosis: An Association or a Coincidence? Clin. Endocrinol. 2007, 67, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Albani, A.; Perez-Rivas, L.G.; Reincke, M.; Theodoropoulou, M. Pathogenesis of Cushing Disease: An Update on the Genetics of Corticotropinomas. Endocr. Pract. 2018, 24, 907–914. [Google Scholar] [CrossRef]
- Cazabat, L.; Bouligand, J.; Salenave, S.; Bernier, M.; Gaillard, S.; Parker, F.; Young, J.; Guiochon-Mantel, A.; Chanson, P. Germline AIP Mutations in Apparently Sporadic Pituitary Adenomas: Prevalence in a Prospective Single-Center Cohort of 443 Patients. J. Clin. Endocrinol. Metab. 2012, 97, E663–E670. [Google Scholar] [CrossRef]
- Dinesen, P.T.; Dal, J.; Gabrovska, P.; Gaustadnes, M.; Gravholt, C.H.; Stals, K.; Denes, J.; Asa, S.L.; Korbonits, M.; Jørgensen, J.O.L. An Unusual Case of an ACTH-Secreting Macroadenoma with a Germline Variant in the Aryl Hydrocarbon Receptor-Interacting Protein (AIP) Gene. Endocrinol. Diabetes Metab. Case Rep. 2015, 2015, 140105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarman, S.; Tuncer, F.N.; Serbest, E. Three Novel MEN1 Variants in AIP-Negative Familial Isolated Pituitary Adenoma Patients. Pathobiology 2019, 86, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Peng, C.; Song, J.; Zhang, Y.; Chen, J.; Song, Z.; Shou, X.; Ma, Z.; Peng, H.; Jian, X.; et al. Germline Mutations in CDH23, Encoding Cadherin-Related 23, Are Associated with Both Familial and Sporadic Pituitary Adenomas. Am. J. Hum. Genet. 2017, 100, 817–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Locantore, P.; Paragliola, R.M.; Cera, G.; Novizio, R.; Maggio, E.; Ramunno, V.; Corsello, A.; Corsello, S.M. Genetic Basis of ACTH-Secreting Adenomas. Int. J. Mol. Sci. 2022, 23, 6824. https://doi.org/10.3390/ijms23126824
Locantore P, Paragliola RM, Cera G, Novizio R, Maggio E, Ramunno V, Corsello A, Corsello SM. Genetic Basis of ACTH-Secreting Adenomas. International Journal of Molecular Sciences. 2022; 23(12):6824. https://doi.org/10.3390/ijms23126824
Chicago/Turabian StyleLocantore, Pietro, Rosa Maria Paragliola, Gianluca Cera, Roberto Novizio, Ettore Maggio, Vittoria Ramunno, Andrea Corsello, and Salvatore Maria Corsello. 2022. "Genetic Basis of ACTH-Secreting Adenomas" International Journal of Molecular Sciences 23, no. 12: 6824. https://doi.org/10.3390/ijms23126824