Contribution of “Omic” Studies to the Understanding of Cadasil. A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Genome-Wide Sequencing and Progress in Epidemiology
4. Omic Studies and Progress in the Etiopathogenesis of CADASIL
4.1. Proteomic Studies and Progress in the Etiopathogenesis of CADASIL
4.2. Transcriptomic Studies and Progress in the Etiopathogenesis of CADASIL
4.3. Microbiome Studies and Progress in the Etiopathogenesis of CADASIL
5. Genome-Wide Studies and Progress in Prognostic Assessment
6. Therapeutic Possibilities
7. Limitations
8. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Coto, E.; Menéndez, M.; Navarro, R.; García-Castro, M.; Alvarez, V. A new de novo Notch3 mutation causing CADASIL. Eur. J. Neurol. 2006, 13, 628–631. [Google Scholar] [CrossRef]
- Opherk, C.; Duering, M.; Peters, N.; Karpinska, A.; Rosner, S.; Schneider, E.; Bader, B.; Giese, A.; Dichgans, M. CADASIL mutations enhance spontaneous multimerization of NOTCH3. Hum. Mol. Genet. 2009, 18, 2761–2767. [Google Scholar] [CrossRef] [Green Version]
- Duering, M.; Karpinska, A.; Rosner, S.; Hopfner, F.; Zechmeister, M.; Peters, N.; Kremmer, E.; Haffner, C.; Giese, A.; Dichgans, M.; et al. Co-aggregate formation of CADASIL-mutant NOTCH3: A single-particle analysis. Hum. Mol. Genet. 2011, 20, 3256–3265. [Google Scholar] [CrossRef] [Green Version]
- Chabriat, H.; Vahedi, K.; Iba-Zizen, M.T.; Joutel, A.; Nibbio, A.; Nagy, T.G.; Krebs, M.O.; Julien, J.; Dubois, B.; Ducrocq, X. Clinical spectrum of CADASIL: A study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Lancet 1995, 346, 934–939. [Google Scholar] [CrossRef]
- Markus, H.S.; Martin, R.J.; Simpson, M.A.; Dong, Y.B.; Ali, N.; Crosby, A.H.; Powell, J.F. Diagnostic strategies in CADASIL. Neurology 2002, 59, 1134–1138. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.; Jarosz, J.M.; Martin, R.J.; Deasy, N.; Powell, J.F.; Markus, H.S. MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology 2001, 56, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Rumbaugh, J.A.; LaDuca, J.R.; Shan, Y.; Miller, C.A. CADASIL: The dermatologic diagnosis of a neurologic disease. J. Am. Acad. Dermatol. 2000, 43, 1128–1130. [Google Scholar] [CrossRef] [PubMed]
- Mykkänen, K.; Junna, M.; Amberla, K.; Bronge, L.; Kääriäinen, H.; Pöyhönen, M.; Kalimo, H.; Viitanen, M. Different clinical phenotypes in monozygotic CADASIL twins with a novel Notch3 mutation. Stroke 2009, 40, 2215–2218. [Google Scholar] [CrossRef] [Green Version]
- Ceroni, M.; Poloni, T.E.; Tonietti, S.; Fabozzi, D.; Uggetti, C.; Frediani, F.; Simonetti, F.; Malaspina, A.; Alimonti, D.; Celano, M.; et al. Migraine with aura and white matter abnormalities: Notch3 mutation. Neurology 2000, 1869–1871. [Google Scholar] [CrossRef]
- Horgan, R.P.; Kenny, L.C. ‘Omic’ technologies: Proteomics and metabolomics learning objectives: Ethical issues. Obstet. Gynaecol. 2011, 189–195. [Google Scholar] [CrossRef]
- Orset, C.; De Grange, P.; Rousselet, E.; Ramsay, L.; Quill, M. Blood transcriptomic biomarker as a surrogate of ischemic brain gene expression. Ann. Clin. Transl. Neurol. 2019, 1681–1695. [Google Scholar] [CrossRef] [Green Version]
- Chong, M.; Sjaarda, J.; Pigeyre, M.; Mohammadi-Shemirani, P.; Lali, R.; Shoamanesh, A.; Gerstein, H.C.; Paré, G. Novel drug targets for ischemic stroke identified through Mendelian randomization analysis of the blood proteome. Circulation 2019, 140, 819–830. [Google Scholar] [CrossRef]
- Razvi, S.S.M.M.; Davidson, R.; Bone, I.; Muir, K.W. The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J. Neurol. Neurosurg. Psychiatry 2005, 76, 739–741. [Google Scholar] [CrossRef] [Green Version]
- Narayan, S.K.; Kalaria, R.N. The minimum prevalence of CADASIL in northeast England. Neurology 2012, 32, 76–78. [Google Scholar] [CrossRef] [Green Version]
- Moreton, F.C.; Razvi, S.S.M.M.; Davidson, R.; Muir, K.W. Changing clinical patterns and increasing prevalence in CADASIL. Acta Neurol. Scand. 2014, 130, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, S.; Zicari, E.; Carluccio, A.; Di Donato, I.; Pescini, F.; Nannucci, S.; Valenti, R.; Ragno, M.; Inzitari, D.; Pantoni, L.; et al. CADASIL in central Italy: A retrospective clinical and genetic study in 229 patients. J. Neurol. 2015, 262, 134–141. [Google Scholar] [CrossRef]
- Rutten, J.W.; Dauwerse, H.G.; Gravesteijn, G.; van Belzen, M.J.; van der Grond, J.; Polke, J.M.; Bernal-Quiros, M.; Lesnik Oberstein, S.A.J.; Van Belzen, M.J.; Der Grond, V.; et al. Archetypal NOTCH3 mutations frequent in public exome: Implications for CADASIL. Ann. Clin. Transl. Neurol. 2016, 3, 844–853. [Google Scholar] [CrossRef]
- Rutten, J.W.; Van Eijsden, B.J.; Duering, M.; Jouvent, E.; Opherk, C.; Pantoni, L.; Federico, A.; Dichgans, M.; Markus, H.S.; Chabriat, H.; et al. The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFr 1–6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFr 7–34 pathogenic variant. Genet. Med. 2018, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Rutten, J.W.; Hack, R.J.; Duering, M.; Gravesteijn, G.; Dauwerse, J.; Overzier, M.; van den Akker, E.B.; Slagboom, E.; Holstege, H.; Nho, K.; et al. Broad phenotype of cysteine altering NOTCH3 variants in UK Biobank: CADASIL to nonpenetrance. Neurology 2020, 95, e1835–e1843. [Google Scholar] [CrossRef]
- Cho, B.P.H.; Nannoni, S.; Harshfield, E.L.; Tozer, D.; Gräf, S.; Bell, S.; Markus, H.S. NOTCH3 variants are more common than expected in the general population and associated with stroke and vascular dementia: An analysis of 200,000 participants. J. Neurol. Neurosurg. Psychiatry 2021, 1–8. [Google Scholar] [CrossRef]
- Hack, R.J.; Rutten, J.W.; Person, T.N.; Li, J.; Khan, A. Cysteine-altering NOTCH3 variants are a risk factor for stroke in the elderly population. Stroke 2020, 3562–3569. [Google Scholar] [CrossRef]
- Lee, Y.; Chung, C.; Chang, M.; Wang, S. NOTCH3 cysteine-altering variant is an important risk factor for stroke in the Taiwanese population. Neurology 2020. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Zhang, X.; Yu, G.; Lee, S.J.; Chen, Y.E.; Prudovsky, I.; Wang, M.M. Biochemical characterization and cellular effects of CADASIL mutants of NOTCH3. PLoS ONE 2012, 7, 1–13. [Google Scholar] [CrossRef]
- Joutel, A. Pathogenesis of CADASIL: Transgenic and knock-out mice to probe function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. BioEssays 2011, 33, 73–80. [Google Scholar] [CrossRef]
- Joutel, A.; Andreux, F.; Gaulis, S.; Domenga, V.; Cecillon, M.; Battail, N.; Piga, N.; Chapon, F.; Godfrain, C.; Tournier-Lasserve, E. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J. Clin. Investig. 2000, 105, 597–605. [Google Scholar] [CrossRef]
- Ishiko, A.; Shimizu, A.; Nagata, E.; Takahashi, K.; Tabira, T.; Suzuki, N. Notch3 ectodomain is a major component of granular osmiophilic material (GOM) in CADASIL. Acta Neuropathol. 2006, 112, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Ueda, A.; Hirano, T.; Takahashi, K.; Kurisaki, R.; Hino, H.; Uyama, E.; Uchino, M. Detection of granular osmiophilic material of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy by light microscopy in frozen sections: Scientific correspondence. Neuropathol. Appl. Neurobiol. 2009, 35, 618–622. [Google Scholar] [CrossRef]
- Ruchoux, M.M.; Maurage, C.A. Endothelial changes in muscle and skin biopsies in patients with CADASIL. Neuropathol. Appl. Neurobiol. 1998, 24, 60–65. [Google Scholar] [CrossRef]
- Lewandowska, E.; Leszczyńska, A.; Wierzba-Bobrowicz, T.; Skowrońska, M.; Mierzewska, H.; Pasennik, E.; Członkowska, A. Ultrastructural picture of blood vessels in muscle and skin biopsy in CADASIL. Folia Neuropathol. 2006, 44, 265–273. [Google Scholar] [PubMed]
- Ghosh, M.; Balbi, M.; Hellal, F.; Dichgans, M.; Lindauer, U.; Plesnila, N. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann. Neurol. 2015, 78, 887–900. [Google Scholar] [CrossRef]
- Okeda, R.; Arima, K.; Kawai, M. Arterial changes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) in relation to pathogenesis of diffuse myelin loss of cerebral white matter: Examination of cerebral medullary arteries by reconstruction of serial sections of an autopsy case. Stroke 2002, 33, 2565–2569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brulin, P.; Godfraind, C.; Leteurtre, E.; Ruchoux, M.M. Morphometric analysis of ultrastructural vascular changes in CADASIL: Analysis of 50 skin biopsy specimens and pathogenic implications. Acta Neuropathol. 2002, 104, 241–248. [Google Scholar] [CrossRef]
- Ruchoux, M.M.; Chabriat, H.; Baudrimont, M.; Tournier-Lasserve, E. Presence of ultrastructural arterial lesions in muscle and skin vessels of patients with CADASIL. Stroke 1994, 25, 2291–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikka, S.; Peng Ng, Y.; Di Maio, G.; Mykkänen, K.; Siitonen, M.; Lepikhova, T.; Pöyhönen, M.; Viitanen, M.; Virtanen, I.; Kalimo, H.; et al. CADASIL mutations and ShRNA silencing of NOTCH3 affect actin organization in cultured vascular smooth muscle cells. J. Cereb. Blood Flow Metab. 2012, 32, 2171–2180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruchoux, M.M.; Domenga, V.; Brulin, P.; Maciazek, J.; Limol, S.; Tournier-Lasserve, E.; Joutel, A. Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am. J. Pathol. 2003, 162, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Haritunians, T.; Chow, T.; De Lange, R.P.J.J.; Nichols, J.T.; Ghavimi, D.; Dorrani, N.; St Clair, D.M.; Weinmaster, G.; Schanen, C.; St. Clair, D.M.; et al. Functional analysis of a recurrent missense mutation in Notch3 in CADASIL. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Baron-Menguy, C.; Domenga-Denier, V.; Ghezali, L.; Faraci, F.M.; Joutel, A. Increased Notch3 activity mediates pathological changes in structure of cerebral arteries. Hypertension 2017, 69, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Hanemaaijer, E.S.; Panahi, M.; Swaddiwudhipong, N.; Tikka, S.; Winblad, B.; Viitanen, M.; Piras, A.; Behbahani, H. Autophagy-lysosomal defect in human CADASIL vascular smooth muscle cells. Eur. J. Cell Biol. 2018, 97, 557–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewandowska, E.; Felczak, P.; Buczek, J.; Gramza, K.; Rafałowska, J. Blood vessel ultrastructural picture in a CADASIL patient diagnosed at an advanced age. Folia Neuropathol. 2014, 52, 443–451. [Google Scholar] [CrossRef]
- Viitanen, M.; Sundström, E.; Baumann, M.; Poyhonen, M.; Tikka, S.; Behbahani, H. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells. Exp. Cell Res. 2013, 319, 134–143. [Google Scholar] [CrossRef]
- Lewandowska, E.; Wierzba-Bobrowicz, T.; Buczek, J.; Gromadzka, G.; Dziewulska, D. CADASIL patient with extracellular calcium deposits. Folia Neuropathol. 2013, 51, 302–311. [Google Scholar] [CrossRef] [PubMed]
- De La Peña, P.; Bornstein, B.; Del Hoyo, P.; Fernández-Moreno, M.A.; Martín, M.A.; Campos, Y.; Gómez-Escalonilla, C.; Molina, J.A.; Cabello, A.; Arenas, J.; et al. Mitochondrial dysfunction associated with a mutation in the Notch3 gene in a CADASIL family. Neurology 2001, 57, 1235–1238. [Google Scholar] [CrossRef]
- Arboleda-Velasquez, J.F.; Manent, J.; Hyun, J.; Tikka, S.; Ospina, C.; Vanderburg, C.R.; Lee, J.H.; Tikka, S.; Ospina, C.; Vanderburg, C.R.; et al. Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proc. Natl. Acad. Sci. USA 2011, 108, E128–E135. [Google Scholar] [CrossRef] [Green Version]
- Monet-Leprêtre, M.; Haddad, I.; Baron-Menguy, C.; Fouillot-Panchal, M.; Riani, M.; Domenga-Denier, V.; Dussaule, C.; Cognat, E.; Vinh, J.; Joutel, A.; et al. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: A new pathomechanism in CADASIL. Brain 2013, 1830–1845. [Google Scholar] [CrossRef] [Green Version]
- Capone, C.; Dabertrand, F.; Baron-Menguy, C.; Chalaris, A.; Ghezali, L.; Domenga-Denier, V.; Schmidt, S.; Huneau, C.; Rose-John, S.; Nelson, M.T.; et al. Mechanistic insights into a TIMP3-sensitive pathway constitutively engaged in the regulation of cerebral hemodynamics. Elife 2016, 5, 1–26. [Google Scholar] [CrossRef]
- Zellner, A.; Scharrer, E.; Arzberger, T.; Oka, C.; Domenga-Denier, V.; Joutel, A.; Lichtenthaler, S.F.; Müller, S.A.; Dichgans, M.; Haffner, C. CADASIL brain vessels show a HTRA1 loss-of-function profile. Acta Neuropathol. 2018, 136, 111–125. [Google Scholar] [CrossRef]
- Nagatoshi, A.; Ueda, M.; Ueda, A.; Tasaki, M.; Inoue, Y.; Ma, Y.; Masuda, T.; Mizukami, M.; Matsumoto, S.; Kosaka, T.; et al. Serum amyloid P component: A novel potential player in vessel degeneration in CADASIL. J. Neurol. Sci. 2017, 379, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Primo, V.; Graham, M.; Bigger-Allen, A.A.; Chick, J.M.; Ospina, C.; Quiroz, Y.T.; Manent, J.; Gygi, S.P.; Lopera, F.; D’Amore, P.A.; et al. Blood biomarkers in a mouse model of CADASIL. Brain Res. 2016, 1644, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Jenoe, P.; Bonati, L.; Engelter, S.; Lyrer, P. Combined transcriptomic and proteomic analyses of cerebral frontal lobe tissue identified RNA metabolism dysregulation as one potential pathogenic mechanism in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Curr. Neurovasc. Res. 2019, 478–490. [Google Scholar] [CrossRef]
- Muiño, E.; Maisterra, O.; Balado, J.J.; Cullell, N.; Carrera, C.; Aguila, N.P.T.; Márquez, J.C.; Fabrega, C.G.; Lledós, M.; Sánchez, J.G.; et al. Genome-wide transcriptome study in skin biopsies reveals an association of E2F4 with cadasil and cognitive impairment. Sci. Rep. 2021, 1–12. [Google Scholar] [CrossRef]
- Giangrande, P.H.; Zhang, J.X.; Tanner, A.; Eckhart, A.D.; Rempel, R.E.; Andrechek, E.R.; Layzer, J.M.; Keys, J.R.; Hagen, P.O.; Nevins, J.R.; et al. Distinct roles of E2F proteins in vascular smooth muscle cell proliferation and intimal hyperplasia. Proc. Natl. Acad. Sci. USA 2007, 104, 12988–12993. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, J.; Inoue, R.; Takagi, T.; Wada, S.; Watanabe, A.; Koizumi, T.; Mukai, M.; Mizuta, I.; Naito, Y.; Mizuno, T. Analysis of gut microbiota in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J. Clin. Biochem. Nutr. 2019, 65, 240–244. [Google Scholar] [CrossRef]
- Chabriat, H.; Hervé, D.; Duering, M.; Godin, O.; Jouvent, E.; Opherk, C.; Alili, N.; Reyes, S.; Jabouley, A.; Zieren, N.; et al. Predictors of clinical worsening in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: Prospective cohort study. Stroke 2015, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Gravesteijn, G.; Rutten, J.W.; Verberk, I.M.W.; Böhringer, S.; Liem, M.K.; van der Grond, J.; Aartsma-Rus, A.; Teunissen, C.E.; Lesnik Oberstein, S.A.J. Serum neurofilament light correlates with CADASIL disease severity and survival. Ann. Clin. Transl. Neurol. 2019, 6, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Opherk, C.; Gonik, M.; Duering, M.; Malik, R.; Jouvent, E.; Hervé, D.; Adib-Samii, P.; Bevan, S.; Pianese, L.; Silvestri, S.; et al. Genome-wide genotyping demonstrates a polygenic risk score associated with white matter hyperintensity volume in CADASIL. Stroke 2014, 45, 968–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutten-Jacobs, L.C.A.; Traylor, M.; Adib-Samii, P.; Thijs, V.; Sudlow, C.; Rothwell, P.M.; Boncoraglio, G.; Dichgans, M.; Bevan, S.; Meschia, J.; et al. Common NOTCH3 variants and cerebral small-vessel disease. Stroke 2015, 46, 1482–1487. [Google Scholar] [CrossRef] [PubMed]
- Müller, K.; Courtois, G.; Ursini, M.V.; Schwaninger, M. New insight into the pathogenesis of cerebral small-vessel diseases. Stroke 2017, 48, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, H.; Kato, T.; Nihonmatsu, M.; Saito, Y.; Mizuta, I.; Noda, T.; Koike, R.; Miyazaki, K.; Kaito, M.; Ito, S.; et al. Distinct molecular mechanisms of HTRA1 mutants in manifesting heterozygotes with CARASIL. Neurology 2016, 86, 1964–1974. [Google Scholar] [CrossRef]
- Gu, L.; Hitzel, J.; Moll, F.; Kruse, C.; Malik, R.A.; Preussner, J.; Looso, M.; Leisegang, M.S.; Steinhilber, D.; Brandes, R.P.; et al. The histone demethylase PHF8 is essential for endothelial cell migration. PLoS ONE 2016, 11, 1–15. [Google Scholar] [CrossRef]
- Chen, C.R.; Kang, Y.; Siegel, P.M.; Massagué, J. E2F4/5 and P107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 2002, 110, 19–32. [Google Scholar] [CrossRef] [Green Version]
Protein Name | Change AV | Change ML | Change N | Molecular Functions and Biological Process |
---|---|---|---|---|
Annexin A2 pseudogene 2 [43] | + | |||
Clusterin [43] | + | + |
| |
Collagen 12 α 1 [43] | + | + | + |
|
Collagen 14 α 1 [43] | + | + |
| |
Collagen 18 α 1 (endostatin included) [43] | + | + |
| |
Collagen 1 α 2 [43] | + |
| ||
Hemoglobin, α [43] | - | - |
| |
Perlecan [43] | + |
| ||
Internexin, α [43] | - | - |
| |
Laminin, α 5 [43] | + | + |
| |
Laminin, γ 1 [43] | + | + |
| |
Lactadherin (medin included) [43] | + | + | + |
|
Smooth muscle myosin heavy chain [43] | + |
| ||
Neurofilament protein, light polypeptide [43] | - | - |
| |
Neurofilament 3 [43] | - |
| ||
Neurofascin [43] | - | - |
| |
Leucine rich repeat proteoglycans [43] | + |
| ||
Solute carrier family 4 | - |
| ||
Vinculin [43] | + |
| ||
Serum amyloid P-component [44] | + | + | + |
|
TIMP3 [44] | + | + |
| |
VTN [44] | + | + | + |
|
Stromal cell-derived factor 1 [44] | + | + |
| |
Chordin [44] | + | + |
| |
Norrin [44] | + | + |
| |
Serine protease 23 [44] | + | + |
| |
High-temperature requirement protein A1 [44] | + | + |
| |
GCell adhesion: lia-derived nexin [44] | + | + |
| |
Cell migration-inducing and hyaluronan-binding protein [44] | + |
| ||
Olfactomedin-like 3 [44] | + | + |
| |
Collagen VIII α1 chain [44] | + |
| ||
Microfibril-associated glycoprotein 4 [44] | + |
| ||
NOTCH3 [44] | + | + | + |
|
Annexin A2 [47] | + |
| ||
Periostin [47] | + | + |
| |
Complement C3 [47] | + |
| ||
Plectin [47] | - | + |
| |
Biglycan [47] | + | + |
| |
Gelsolin [47] | - | + |
|
Target | Drug | Description |
---|---|---|
VTN | Abciximab | Fab fragment of the chimeric human-murine monoclonal antibody 7E3. Abciximab binds to the glycoprotein (GP) IIb/IIIa receptor of human platelets and inhibits platelet aggregation by preventing the binding of fibrinogen, von Willebrand factor, and other adhesive molecules. It also binds to the vitronectin (αvβ3) receptor found on platelets and vessel wall endothelial and smooth muscle cells |
Others: copper, zinc, zinc acetate, chloride | ||
TIMP3 | Pimagedine | Pimagedine has been developed by Synvista Therapeutics, Inc for the treatment of diabetic kidney disease. It is an advanced glycation end-product inhibitor that manages diabetic nephropathy, either alone or in combination with other therapies. It is beneficial in treating patients with diabetic nephropathy. |
Serum amyloid P-component | Methyl 4,6-O-[(1R)-1-carboxyethylidene]-beta-D-galactopyranoside, Bis-1,2-{[(Z)-2-carboxy-2-methyl-1,3-dioxane]-5-yloxycarbamoyl}-ethane, copper, zinc, zinc acetate, chloride |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muiño, E.; Fernández-Cadenas, I.; Arboix, A. Contribution of “Omic” Studies to the Understanding of Cadasil. A Systematic Review. Int. J. Mol. Sci. 2021, 22, 7357. https://doi.org/10.3390/ijms22147357
Muiño E, Fernández-Cadenas I, Arboix A. Contribution of “Omic” Studies to the Understanding of Cadasil. A Systematic Review. International Journal of Molecular Sciences. 2021; 22(14):7357. https://doi.org/10.3390/ijms22147357
Chicago/Turabian StyleMuiño, Elena, Israel Fernández-Cadenas, and Adrià Arboix. 2021. "Contribution of “Omic” Studies to the Understanding of Cadasil. A Systematic Review" International Journal of Molecular Sciences 22, no. 14: 7357. https://doi.org/10.3390/ijms22147357