Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills
Abstract
:1. Introduction
2. Biosurfactants
Microorganism/Type of Biosurfactant | Patent Holder | Title of Patent | Publication No. | Publication Date |
---|---|---|---|---|
Sophorolipid producer | Borzeix F | Sophorolipids as stimulating agent of dermal fibroblast metabolism | US 6057302 A | 2 May 2000 |
Sophorolipid producer | Borzeix F, Concaix | Use of sophorolipids comprising diacetyl lactones as agent for stimulating skin fibroblast metabolism | US 6596265 B1 | 22 July 2003 |
New strains of hydrocarbon-degrading bacteria capable of producing biosurfactants | Robin L. Brigmon, Sandra Story, Denis Altman, Christopher J. Berry | Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals | PI 0519962-0 A2 | 28 June 2005 |
Sophorolipid producer | Gross RA, Shah V, Doncel GF | Spermicidal and virucidal properties of various forms of sophorolipids | WO 2005089522 A2 | 29 September 2005 |
C. albicans, C. rugosa, C. tropicalis, C. lipolytica, C. torulopsis | Awada S, Spendlove R, Awada M | Microbial biosurfactants as agents for controlling pests | US 20050266036 A1 | 1 December 2005 |
Pseudomonas aeruginosa | Silvanito Alves Barbosa, Roberto Rodrigues De Souza | Biosurfactant production for development of biodegradable detergent | PI 1102592-1 A2 | 16 May 2011 |
Sophorolipid producer | Cox TF, Crawford RJ, Gregory LG, Hosking SL, Kotsakis | Mild to skin, foaming detergent composition | WO2011120776 A1 | 6 October 2011 |
Streptomyces sp. | Ana LF Porto, Eduardo F Santos, Leonie A Sarubbo | Biosurfactant and production process | PI 1105951-6 A2 | 28 November 2011 |
Candida guilliermondii | Leonie A Sarubbo, Valdemir A Santos, Raquel D Rufino, Juliana M Luna | Production process of biosurfactant produced by Candida guilliermondii using agro-industrial waste | BR102012023115 | 13 September 2012 |
Candida bombicola ATCC 2214 | Soetaert W, De MS, Saerens K, Roelants S, Van BI | Modified sophorolipid production by yeast strains and uses | EP 2580321 A1 | 17 April 2013 |
Lipopeptide producer | X. Vecino, R. Dvesa-Rey, J.M. Cruz, A.B. Moldes | Method for separating the surfactants present in the washing liquors of corn and uses | WO2014044876 A1 | 27 March 2014 |
Waste/by-Product | Biosurfactant-Producing Microorganism | Reference |
---|---|---|
Canola waste frying oil and corn steep liquor | Pseudomonas cepacia CCT6659 | [21] |
Glycerol | Pseudomonas aeruginosa UCP0992 | [22] |
Clarified cashew apple juice | Bacillus subtilis LAMI005 | [23] |
Vinasse and waste frying oil | Bacillus pumilus | [24] |
Cassava wastewater | Bacillus subtilis LB5a | [25] |
Soybean oil refinery residue and corn steep liquor | Candida sphaerica UCP0995 | [26] |
Ground-nut oil refinery residue and corn steep liquor | Candida sphaerica UCP0995 | [27] |
Animal fat and corn steep liquor | Candida lipolytica UCP0988 | [15] |
Vegetable fat | Candida glabrata UCP1002 | [28] |
Waste frying oil | Candida tropicalis UCP0996 | [29] |
Molasses | Pseudomonas aeruginosa (P.A.) | [30] |
3. Biosurfactant-Producing Microorganisms
Class/Type of Biosurfactant | Microorganisms | |
---|---|---|
Glycolipids | ||
Rhamnolipids | Pseudomonas aeruginosa | |
Sophorolipids | Torulopsis bombicola, T. apícola | |
Trehalolipids | Rhodococcus erythropolis, Mycobacterium sp. | |
Lipopeptides and lipoproteins | ||
Peptide-lipid | Bacillus licheniformis | |
Viscosin | Pseudomonas fluorescens | |
Serrawettin | Serratia marcenscens | |
Surfactin | Bacillus subtilis | |
Subtilisin | Bacillus subtilis | |
Gramicidin | Bacillus brevis | |
Polymyxin | Bacillus polymyxia | |
Fatty acids, neutral lipids and phospholipids | ||
Fatty acid | Corynebacterium lepus | |
Neutral lipids | Nocardia erythropolis | |
Phospholipids | Thiobacillus thiooxidans | |
Polymeric surfactants | ||
Emulsan | Acinetobacter calcoaceticus | |
Biodispersan | Acinetobacter calcoaceticus | |
Liposan | Candida lipolytica | |
Carbohydrate-lipid-protein | Pseudomonas fluorescens | |
Mannan-lipid-protein | Candida tropicalis | |
Particulate surfactant | ||
Vesicles | Acinetobacter calcoaceticus |
4. Environmental Contamination by Oil Spills and Biosurfactant-Enhanced Remediation
Microorganisms | Type of Biosurfactant | Applications |
---|---|---|
Rhodococcus erythropolis 3C-9 | Glucolipid and trehalose lipid | Oil spill cleanup operations |
Pseudomonas aeruginosa S2 | Rhamnolipid | Bioremediation of oil-contaminated sites |
Rhodococcus sp. TW53 | Lipopeptide | Bioremediation of marine oil pollution. |
R. wratislaviensis BN38 | Glycolipid | Bioremediation applications |
Bacillus subtilis BS5 | Lipopeptide | Bioremediation of hydrocarbon-contaminated sites |
Azotobacter chroococcum | Lipopeptide | Environmental applications. |
Pseudomonas aeruginosa BS20 | Rhamnolipid | Bioremediation of hydrocarbon-contaminated sites |
Micrococcus luteus BN56 | Trehalose tetraester | Bioremediation of oil-contaminated environments |
Nocardiopsis alba MSA10 | Lipopeptide | Bioremediation |
Pseudoxanthomonas sp. PNK-04 | Rhamnolipid | Environmental applications |
Pseudomonas alcaligenes | Rhamnolipid | Environmental applications |
Nocardiopsis lucentensis MSA04 | Glycolipid | Bioremediation of marine environment |
Calyptogena soyoae | Mannosylerythritol lipid | Bioremediation of marine environment |
Pseudozyma hubeiensis | Glycolipid | Bioremediation of marine oil pollution |
Pseudomonas cepacia CCT6659 | Rhamnolipid | Bioremediation of marine and soil environments |
Candida bombicola | Sophorolipids | Environmental applications |
C. glabrata UCP1002 | Protein-carboydrate-lipid complex | Oil recovery from sand |
C. lipolytica UCP0988 | Sophorolipids | Oil recovery |
C. lipolytica UCP0988 | Sophorolipids | Oil removal |
C. sphaerica UCP0995 | Protein-carboydrate-lipid complex | Removal of oil from sand |
C. lipolytica UCP0988 | Sophorolipids | Control of environmental oil pollution |
C. sphaerica UCP0995 | Protein-carboydrate-lipid complex | Bioremediation processes |
C. glabrata UCP1002 | Protein-carboydrate-lipid complex | Oil removal |
C. guilliermondii UCP0992 | Glycolipid complex | Removal of petroleum derivate motor oil from sand |
C. tropicalis UCP0996 | Protein-carboydrate-lipid complex | Removal of petroleum and motor oil adsorbed to sand |
C. lipolytica UCP0988 | Sophorolipids | Removal of petroleum and motor oil adsorbed to sand |
C. sphaerica UCP0995 | Protein-carboydrate-lipid complex | Oil removal |
5. Application of Biosurfactants in the Petroleum Industry
Step in Petroleum Production Chain | Applications |
---|---|
Extraction | Reservoir wettability modification |
Oil viscosity reduction | |
Drilling mud | |
Paraffin/asphalt deposition control | |
Enhanced oil displacement | |
Oil viscosity reduction | |
Transportation | Oil viscosity reduction |
Oil emulsion stabilization | |
Paraffin/asphalt deposition | |
Oil tank/container cleaning | Oil viscosity reduction |
Oily sludge emulsification | |
Hydrocarbon dispersion |
5.1. Extraction of Crude Oil from Reservoirs
5.2. Transport of Crude Oil by Pipelines
5.3. Oil Storage Tank Cleaning
6. Toxicity of (Bio)Surfactants and Dispersants on Organisms in the Bioremediation Process
Test Compound | Organisms/Vegetables Test | Toxicity | References |
---|---|---|---|
Biosurfactants | |||
Emulsan | Mysidopsis bahia | LC50 (200 mg/L) | [61] |
Emulsan | Menidia beryllina | LC50 (300 mg/L) | [61] |
Candida sphaerica UCP 0995 biosurfactant | Brassica oleracea | 86% GI | [81] |
Candida sphaerica UCP 0995 biosurfactant | Artemia salina | LC50 (600 mg/L) | [81] |
Candida sphaerica UCP 0995 biosurfactant | Brassica oleracea | no toxicity | [18] |
Candida sphaerica UCP 0995 biosurfactant | Artemia salina | no toxicity | [18] |
Candida lipolytica UCP 0988 biosurfactant | Brassica oleracea | no toxicity | [20] |
Candida lipolytica UCP 0988 biosurfactant | Artemia salina | no toxicity | [20] |
Pseudomonas aeruginosa UCP 0992 biosurfactant | Brassica oleracea | 80% GI | [22] |
Pseudomonas aeruginosa UCP 0992 biosurfactant | Artemia salina | LC50 (525 mg/L) | [22] |
Emulsifiers/Dispersing agents | |||
Dodecylbenzene sulfonate/LAS | Dugesia japonica | LC50 (1.45 mg/L) | [82] |
Lauryl sulfate/SDS | Dugesia japonica | LC50 (0.36 mg/L) | [82] |
Triton X-100 | Mysidopsis bahia | LC50 (3.3 mg/L) | [61] |
Triton X-100 | Menidia beryllina | LC50 (2.5 mg/L) | [61] |
Lauryl sulfate/SDS | Americamysis bahia | LC50 (18–23 mg/L) | [68] |
Lauryl sulfate/SDS | Menidia beryllina | LC50 (10 mg/L) | [68] |
Oil spill dispersants | |||
Corexit 9500 | Mysidopsis bahia | LC50 (13.4 mg/L) | [61] |
Corexit 9500 | Menidia beryllina | LC50 (75.7 mg/L) | [61] |
Corexit 9500 | Porites astreoides | 13% surviving | [83] |
Corexit 9500 | Montastraea faveolata | 0% surviving | [83] |
Corexit 9500 | Americamysis bahia | 42 (mg/L) | [68] |
Corexit 9500 | Menidia beryllina | 130 (mg/L) | [68] |
Corexit 9500 | Brachionus plicatilis | LC50 (0.447 mg/L) | [67] |
Corexit 9500 | Brachionus manjavacas | LC50 (14.2 mg/L) | [67] |
Crude oils | |||
BP Horizon source oil | Porites astreoides | 67% surviving | [83] |
BP Horizon source oil | Montastraea faveolata | 27% surviving | [83] |
Louisiana sweet crude oil | Americamysis bahia | LC50 (2.7 mg/L) | [68] |
Louisiana sweet crude oil | Menidia beryllina | LC50 (3.5 mg/L) | [68] |
Macondo sweet crude oil | Brachionus plicatilis | LC50 (2.47 mg/L) | [67] |
Macondo sweet crude oil | Brachionus sp. | LC50 (19.3 mg/L) | [67] |
Dispersant/oil mixtures | |||
Corexit 9500/BP Horizon source oil | Porites astreoides | 67% surviving | [83] |
Corexit 9500/BP Horizon source oil | Montastraea faveolata | 20% surviving | [83] |
Corexit 9500/Louisiana sweet crude oil | Americamysis bahia | LC50 (5.4 mg/L) | [68] |
Corexit 9500/Louisiana sweet crude oil | Menidia beryllina | LC50 (7.6 mg/L) | [68] |
1:10 Corexit 9500/Macondo sweet crude oil | Brachionus manjavacas | 0.21 (mg/L) | [67] |
1:50 Corexit 9500/Macondo sweet crude oil | Brachionus manjavacas | 0.23 (mg/L) | [67] |
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, Z.; Hou, Z.; Yang, C.; Ma, C.; Tao, F.; Xu, P. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresour. Technol. 2011, 102, 4111–4116. [Google Scholar] [CrossRef]
- Souza, E.C.; Vessoni-Penna, T.C.; Souza Oliveira, R.P. Biosurfactant-enhanced hydrocarbon bioremediation: An overview. Int. Biodeterior. Biodegrad. 2014, 89, 88–94. [Google Scholar] [CrossRef]
- Sobrinho, H.B.; Luna, J.M.; Rufino, R.D.; Porto, A.L.F.; Sarubbo, L.A. Biosurfactants: Classification, properties and environmental applications. In Recent Developments in Biotechnology, 1st ed.; Studium Press LLC: Houston, TX, USA, 2013; Volume 11, pp. 1–29. [Google Scholar]
- Franzetti, A.; Caredda, P.; Ruggeri, C.; la Colla, P.; Tamburini, E.; Papacchini, M.; Bestetti, G. Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 2009, 75, 810–807. [Google Scholar]
- Marchant, R.; Banat, I.M. Microbial biosurfactants: Challenges and opportunities for future exploitation. Trends Biotechnol. 2012, 11, 558–565. [Google Scholar] [CrossRef]
- Rocha e Silva, N.M.P.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatal. Agric. Biotechnol. 2013, 3, 132–139. [Google Scholar]
- Malik, Z.A.; Ahmed, S. Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium. Afr. J. Biotechnol. 2012, 11, 650–658. [Google Scholar]
- Lin, M.; Yuhua, L.; Weiwei, C.; Hui, W.; Xiaoke, H. Use of bacteria-immobilized cotton fiUse to absorb and degrade crude oil. Int. Biodeterior. Biodegrad. 2014, 88, 8–12. [Google Scholar] [CrossRef]
- Silva, E.J.; Rocha e Silva, N.M.P.; Rufino, R.D.; Luna, J.M.; Silva, R.O.; Sarubbo, L.A. Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil. Colloids Surf. B Biointerfaces 2014, 117, 36–41. [Google Scholar] [CrossRef]
- Makkar, R.S.; Cameotra, S.S.; Banat, I.M. Advances in utilization of renewable substrates for biosurfactant production. Appl. Microbiol. Biotechnol. 2011, 1, 1–5. [Google Scholar]
- Dziegielewska, E.; Adamczak, M. Evaluation of wast products in the synthesis of surfactants by yeasts. Chem. Pap. 2013, 67, 1113–1122. [Google Scholar] [CrossRef]
- Aparna, A.; Srinikethan, G.; Hedge, S. Effect of addition of biosurfactant produced by Pseudomonas ssp. on biodegradation of crude oil. In International Proceedings of Chemical, Biological & Environmental Engineering. Proceedings of the 2nd International Proceedings of Chemical, Singapore, Singapore, 26–28 February 2011; Volume 6, pp. 71–75.
- Campos, J.M.; Stamford, T.L.M.; Sarubbo, L.A.; Luna, J.M.; Rufino, R.D.; Banat, I.M. Microbial biosurfactants as additives for food industries. Biotechnol. Prog. 2013, 29, 1097–1108. [Google Scholar] [CrossRef]
- Kapadia, S.G.; Yagnik, B.N. Current trend and potential for microbial biosurfactants. Asian J. Exp. Biol. Sci. 2013, 4, 1–8. [Google Scholar]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Salgueiro, A.A.; Sarubbo, L.A. Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J. Pet. Sci. Eng. 2013, 105, 43–50. [Google Scholar] [CrossRef]
- Ławniczak, L.; Marecik, R.; Chrzanowski, L. Contributions of biosurfactants to natural or induced bioremediation. Appl. Microbiol. Biotechnol. 2013, 97, 2327–2339. [Google Scholar] [CrossRef]
- Banat, I.M.; Franzetti, A.; Gandolfi, I.; Bestetti, G.; Martinotti, M.G.; Fracchia, L.; Smyth, T.J.; Marchant, R. Microbial biosurfactants production, applications. Appl. Microbiol. Biotechnol. 2010, 87, 427–444. [Google Scholar] [CrossRef]
- Luna, J.M.; Rufino, R.D.; Sarubbo, L.A.; Campos–Takaki, G.M. Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf. B Biointerfaces 2013, 102, 202–209. [Google Scholar] [CrossRef]
- Sachdev, D.P.; Cameotra, S.S. Biosurfactants in agriculture. Appl. Microbiol. Biotechnol. 2013, 97, 1005–1016. [Google Scholar] [CrossRef]
- Rufino, R.D.; Luna, J.M.; Campos Takaki, G.M.; Sarubbo, L.A. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron. J. Biotechnol. 2014, 17, 34–38. [Google Scholar] [CrossRef]
- Silva, R.C.F.S.; Rufino, R.D.; Luna, J.M.; Farias, C.B.B.; Filho, H.J.B.; Santos, V.A.; Sarubbo, L.A. Enhancement of Biosurfactant Production from Pseudomonas cepacia CCT6659 Through Optimisation of Nutritional Parameters Using Response Surface Methodology. Tenside Surf. Det. 2013, 50, 137–142. [Google Scholar] [CrossRef]
- Silva, S.N.R.L.; Farias, C.B.B.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf. B Biointerfaces 2010, 79, 174–183. [Google Scholar] [CrossRef]
- Oliveira, J.G.; Garcia-Cruz, C.H. Properties of a biosurfactant produced by Bacillus pumilus using vinasse and waste frying oil as alternative carbon sources. Braz. Arch. Biol. Technol. 2013, 56, 155–160. [Google Scholar] [CrossRef]
- Oliveira, D.W.F.; Franc, I.W.L.; Félix, A.K.N.; Martins, J.J.L.; Giroa, M.E.A.; Melo, V.M.M.; Alves, L.R.B.G. Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Surf. B Biointerfaces 2013, 101, 34–43. [Google Scholar] [CrossRef]
- Barros, F.F.C.; Quadros, C.P.; Pastore, G.M. Propriedades emulsificantes e estabilidade do biossurfactante produzido por Bacillus subtilis em manipueira. Cienc. Tecnol. Aliment. 2008, 28, 979–985. [Google Scholar] [CrossRef]
- Luna, J.M.; Rufino, R.D.; Sarubbo, L.A.; Rodrigues, L.R.M.; Teixeira, J.A.C.; Campos-Takaki, G.M. Evaluation antimicrobial and antiadhesive properties of the biosurfactant lunasan produced by Candida sphaerica UCP 0995. Curr. Microbiol. 2011, 62, 1527–1534. [Google Scholar] [CrossRef] [Green Version]
- Sobrinho, H.B.S.; Rufino, R.D.; Luna, J.M.; Salgueiro, A.A.; Campos-Takaki, G.M.; Leite, L.F.C.; Sarubbo, L.A. Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochem. 2008, 43, 912–917. [Google Scholar] [CrossRef]
- Gusmão, C.A.B.; Rufino, R.D.; Sarubbo, L.A. Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant. World J. Microbiol. Biotechnol. 2010, 26, 1683–1692. [Google Scholar] [CrossRef]
- Batista, R.M.; Rufino, R.D.; Luna, J.M.; Souza, J.E.G.; Sarubbo, L.A. Effect of medium components on the production of a biosurfactant from Candida tropicalis applied to the removal of hydrophobic contaminants in soil. Water Environ. Res. 2010, 82, 418–425. [Google Scholar] [CrossRef]
- Santos, C.A.; Bezerra, M.S.; Pereira, H.S.; Santos, E.S.; Macedo, G.R. Production and recovery of rhamnolipids using sugar cane molasses as carbon source. J. Chem. Eng. Chem. Eng. 2010, 4, 27. [Google Scholar]
- Al-Bahry, S.N.; Al-Wahaibi, Y.M.; Elshafie, A.E.; Al-Bemani, A.S.; Joshi, S.J.; Al-akhmari, H.S.; Al-Sulaimani, H.S. Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int. Biodeterior. Biodegrad. 2013, 81, 141–146. [Google Scholar] [CrossRef]
- Peypoux, F.; Bonmatin, J.M.; Wallach, J. Recent trends in the biochemistry of Surfactin. Appl. Microbiol. Biotechnol. 1999, 51, 553–563. [Google Scholar] [CrossRef]
- Lu, J.R.; Zhao, X.B.; Yaseen, M. Biomimetic amphiphiles: Biosurfactants. Curr. Opin. Colloid Interface Sci. 2007, 12, 60–67. [Google Scholar] [CrossRef]
- Pacwa–Plociniczak, M.; Plaza, G.A.; Piotrowska–Seget, Z.; Cameotra, S.S. Environmental applications of biosurfactants: Recent advances. Int. J. Mol. Sci. 2011, 13, 633–654. [Google Scholar]
- Lebrero, R.; Estrada, J.M.; Muñoz, R.; Quijano, G. Toluene mass transfer characterization in a biotrickling filter. Biochem. Eng. J. 2012, 60, 44–49. [Google Scholar] [CrossRef]
- EPA United States Environmental Protection Agency. Available online: http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/decapb.cfm (accessed on 3 April 2014).
- EPA United States Environmental Protection Agency. Available online: http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/ (accessed on 1 May 2014).
- Lin, C.W.; Chen, L.H.; Yet-Pole, I.; Lai, C.Y. Microbial communities and biodegradation in lab-scale BTEX-contaminated groundwater remediation using an oxygen-releasing reactive barrier. Bioprocess Biosyst. Eng. 2010, 33, 383–391. [Google Scholar] [CrossRef]
- OESP, O Estado de São Paulo; Diário de São Paulo: São Paulo, Brazil, 2000.
- Maciel-Souza, M.C.; Macrae, A.; Volpon, A.G.T.; Ferreira, P.S.; Mendonça-Hagler, L.C. Chemical and microbiological characterization of mangrove sediments after a large oil-spill in guanabara bay. Braz. J. Microbiol. 2006, 37, 262–266. [Google Scholar]
- Garza-Gil, M.D.; Prada-Blanco, A.; Vázquez-Rodríguez, M.X. Estimating the short-term economic damages from the Prestige oil spill in the Galician fisheries and tourism. Ecol. Econ. 2006, 58, 842–849. [Google Scholar] [CrossRef]
- Yeung, C.W.; Law, B.A.; Milligan, T.G.; Lee, K.; Whyte, L.G.; Greer, C.W. Analysis of bacterial diversity and metals in produced water, seawater and sediments from an offshore oil and gas production platform. Mar. Pollut. Bull. 2011, 62, 2095–2105. [Google Scholar] [CrossRef]
- Asimiea, O.A.; Sam-Wobo, S.O. The impact of hydrocarbon waste from brass oil terminal on the Phytoplancton and Periphyton communities of lower Brass River, Niger Delta, Nigeria. J. Emerg.Trends Eng. Appl. Sci. 2011, 2, 729–733. [Google Scholar]
- Costa, A.S.; Romão, L.P.; Araújo, B.R.; Lucas, S.C.; Maciel, S.T.; Wisniewski, A., Jr.; Alexandre, M.R. Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Bioresour. Technol. 2012, 105, 31–39. [Google Scholar] [CrossRef]
- Bachmann, R.T.; Johnson, A.C.; Edyean, R.G.J. Biotechnology in the petroleum industry: An overview. Int. Biodeterior. Biodegrad. 2014, 86, 225–237. [Google Scholar] [CrossRef]
- Olkowska, E.; Polkowska, Z.; Namiésnik, J. Analytical procedures for the determination of surfactants in environmental samples. Talanta 2012, 88, 1–13. [Google Scholar] [CrossRef]
- Moldes, A.B.; Paradelo, R.; Vecino, X.; Cruz, J.M.; Gudiña, E.; Rodrigues, L.; Teixeira, J.A.; Dominguez, J.M.; Barral, M.T. Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Moldes, A.B.; Paradelo, R.; Rubinos, D.; Devesa-Rey, R.; Cruz, J.M.; Barral, M.T. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. J. Agric. Food Chem. 2011, 59, 9443–9447. [Google Scholar]
- Sarubbo, L.A.; Campos-Takaki, G.M. Candida biosurfactant-enhanced removal hydrophobic organic pollutants. In Bioremediation: Biotechnology, Engineering and Environmental Management; Mason, A.C., Ed.; Nova Publishers: New York, NY, USA, 2010; pp. 435–448. [Google Scholar]
- EMBRAPA. Plano Nacional de Agroenergia 2006–2011/Ministério da Agricultura, Pecuária e Abastecimento, Secretaria de Produção e Agroenergia, 2nd ed.; Embrapa Informação Tecnológica: Brasília, Brazil, 2006; p. 110. [Google Scholar]
- CNI (Confederação Nacional da Indústria). Matriz Energética: Cenários, Oportunidades e Desafios; CNI: Brasília, Brazil, 2007; p. 82. [Google Scholar]
- Cerón-Camacho, R.; Martínez-Palou, R.; Chávez-Gómez, B.; Cuéllar, F.; Bernal-Huicochea, C.; Clavel, J.C.; Aburto, J. Synergistic effect of alkyl-O-glucoside and -cellobioside biosurfactants as effective emulsifiers of crude oil in water. A proposal for the transport of heavy crude oil by pipeline. Fuel 2013, 110, 310–317. [Google Scholar]
- Assadi, M.; Tabatabaee, M.S. Biosurfactants and their use in upgrading petroleum vacuum distillation residue: A review. Int. J. Environ. Res. 2010, 4, 549–572. [Google Scholar]
- Luna, J.M.; Rufino, R.D.; Campos-Takakia, G.M.; Sarubbo, L.A. Properties of the biosurfactant produced by Candida Sphaerica cultivated in low-cost substrates. Chem. Eng. Trans. 2012, 27, 67–72. [Google Scholar]
- Al-Sulaimani, H.; Joshi, S.; Al-Wahaibi, Y.; Al-Bahry, S.N.; Elshafie, A.; Al-Bemani, A. Microbial biotechnology for enhancing oil recovery: Current developments and future prospects. Biotechnol. Bioinf. Bioeng. J. 2011, 1, 147–158. [Google Scholar]
- Sun, S.; Zhang, Z.; Luo, Y.; Zhong, W.; Xiao, M.; Yi, W.; Yub, L.; Fu, P. Exopolysaccharide production by agenetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery. Bioresour. Technol. 2011, 102, 6153–6158. [Google Scholar] [CrossRef]
- Perfumo, A.; Rancich, I.; Banat, I.M. Possibilities and challenges for biosurfactants use in petroleum industry. Adv. Exp. Med. Biol. 2010, 672, 135–145. [Google Scholar]
- Sarafzadeh, P.; Niazi, A.; Oboodi, V.; Ravanbakhsh, M.; Hezave, A.Z.; Shahab Ayatollahi, S.; Raeissi, S. Investigating the efficiency of MEOR processes using Enterobacter cloacae and Bacillus stearothermophilus SUCPM#14 (biosurfactant-producing strains) in carbonated reservoirs. J. Pet. Sci. Eng. 2014, 113, 46–53. [Google Scholar] [CrossRef]
- Matsui, T.; Namihira, T.; Mitsuta, T.; Saeki, H. Removal of oil tank bottom sludge by novel biosurfactant, JE1058BS. J. Jpn. Pet. Inst. 2012, 55, 138–141. [Google Scholar] [CrossRef]
- Diab, A.; El Din, S.G. Application of the biosurfactants produced by Bacillus spp. (SH 20 and SH 26) and Pseudomonas aeruginosa SH 29 isolated from the rhizosphere soil of an Egyptian salt marsh plant for the cleaning of oil—contaminataed vessels and enhancing the biodegradation of oily sludge. Afr. J. Environ. Sci. Technol. 2013, 7, 671–679. [Google Scholar]
- Edwards, K.R.; Lepo, J.E.; Lewis, M.A. Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Mar. Pollut. Bull. 2003, 46, 1309–1316. [Google Scholar] [CrossRef]
- Franzetti, A.; di Gennaro, P.; Bevilacqua, A.; Papacchini, M.; Bestetti, G. Environmental features of two commercial surfactants widely used in soil remediation. Chemosphere 2006, 62, 1474–1480. [Google Scholar] [CrossRef]
- Franzetti, A; Gandolfi, I.; Raimondi, C.; Bestetti, G.; Banat, I.M.; Smyth, T.J.; Papacchini, M.; Cavallo, M.; Fracchia, L. Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. Bioresour. Technol. 2012, 108, 245–251. [Google Scholar] [CrossRef]
- Van Hamme, J.D.; Ward, O.P. Influence of chemical surfactants on the biodegradation of crude oil by a mixed-bacterial culture. Can. J. Microbiol. 1999, 45, 130–137. [Google Scholar] [CrossRef]
- Singh, A.; van Hamme, J.D.; Ward, O.P. Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol. Adv. 2007, 25, 99–121. [Google Scholar] [CrossRef]
- Berninger, J.P.; Williams, E.S.; Brooks, B.W. An initial probabilistic hazard assessment of oil dispersants approved by the United States National Contingency Plan. Environ. Toxicol. Chem. 2011, 30, 1704–1708. [Google Scholar] [CrossRef]
- Rico-Martínez, R.; Snell, T.W.; Shearer, T.L. Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A® to the Brachionus plicatilis species complex (Rotifera). Environ. Pollut. 2012, 173, 5–10. [Google Scholar]
- Hemmer, M.J.; Barron, M.G.; Greene, R.M. Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species. Environ. Toxicol. Chem. 2011, 30, 2244–2252. [Google Scholar] [CrossRef]
- U. S. Environmental Protection Agency. Available online: http://www.epa.gov/oppefed1/ecorisk_ders/toera_analysis eco.htm#Ecotox (accessed on 12 May 2014).
- Anderson, J.A.; Kuhl, A.J.; Anderson, A.N. Toxicity of oil and dispersed oil on juvenile mud crabs, Rhithropanopeus harrisii. Bull. Environ. Contam. Toxicol. 2014, 92, 375–380. [Google Scholar] [CrossRef]
- Hagner, M.; Penttinen, O.-P.; Pasanen, T.; Tiilikkala, K.; Setälä, H. Acute toxicity of birch tar oil on aquatic organisms. Agric. Food Sci. 2010, 19, 24–32. [Google Scholar] [CrossRef]
- Lima, T.M.S.; Procópio, L.C.; Brandão, F.D.; Leão, B.A.; Tótola, M.R.; Borges, A.C. Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Bioresour. Technol. 2011, 102, 2957–2964. [Google Scholar] [CrossRef]
- Girotti, S.; Ferri, E.N.; Fumo, M.G.; Maiolini, E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal. Chim. Acta 2008, 608, 2–29. [Google Scholar] [CrossRef]
- Van Beelen, P.; Doelman, P. Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediments. Chemosphere 1997, 34, 455–499. [Google Scholar] [CrossRef]
- Brinkmann, C.; Eisentraeger, A. Completely automated short-term genotoxicity testing for the assessment of chemicals and characterization of contaminated soils and waste waters. Environ. Sci. Pollut. Res. Int. 2008, 15, 211–217. [Google Scholar] [CrossRef]
- Van der Heide, T.; van Nes, E.H.; van Katwijk, M.M.; Scheffer, M.; Jan Hendriks, A.; Smolders, A.J.P. Alternative stable states driven by density-dependent toxicity. Ecosystems 2010, 13, 841–850. [Google Scholar] [CrossRef]
- Lopes, P.R.M.; Montagnolli, R.N.; Domingues, R.F.; Bidoia, E.D. Toxicity and biodegradation in sandy soil contaminated by lubricant oils. Bull. Environ. Contam. Toxicol. 2010, 84, 454–458. [Google Scholar] [CrossRef]
- Guven, K.; Togrul, S.; Uyar, F.; Ozant, S.; de Pomerai, D.I. A comparative study of bioassays based on enzyme biosynthesis in Escherichia coli and Bacillus subtilis exposed to heavy metals and organic pesticides. Enzym. Microb. Technol. 2003, 32, 658–664. [Google Scholar] [CrossRef]
- Reteuna, C.; Vasseur, P.; Cabridenc, R. Performances of three bacterial assays in toxicity assessment. Hydrobiology 1989, 188–189, 149–153. [Google Scholar] [CrossRef]
- Rosal, R.; Rodea-Palomares, I.; Boltes, K.; Fernández-Piñas, F.; Leganés, F.; Petre, A. Ecotoxicological assessment of surfactants in the aquatic environment: Combined toxicity of docusate sodium with chlorinated pollutants. Chemosphere 2010, 81, 288–293. [Google Scholar] [CrossRef]
- Sobrinho, H.B.S.; Luna, J.M.; Rufino, R.D.; Porto, A.L.F.; Sarubbo, L.A. Assessment of toxicity of a biosurfactant from Candida sphaerica UCP 0995 cultivated with industrial residues in a bioreactor. Electron. J. Biotechnol. 2013, 16. [Google Scholar] [CrossRef]
- Li, M.H. Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian. Chemosphere 2008, 70, 1796–803. [Google Scholar] [CrossRef]
- Goodbody-Gringley, G.; Wetzel, D.L.; Gillon, D.; Pulster, E.; Miller, A.; Ritchie, K.B. Toxicity of deepwater horizon source oil and the chemical dispersant, Corexit® 9500, to coral larvae. PLoS One 2013, 2013. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Silva, R.D.C.F.S.; Almeida, D.G.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills. Int. J. Mol. Sci. 2014, 15, 12523-12542. https://doi.org/10.3390/ijms150712523
Silva RDCFS, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills. International Journal of Molecular Sciences. 2014; 15(7):12523-12542. https://doi.org/10.3390/ijms150712523
Chicago/Turabian StyleSilva, Rita De Cássia F. S., Darne G. Almeida, Raquel D. Rufino, Juliana M. Luna, Valdemir A. Santos, and Leonie Asfora Sarubbo. 2014. "Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills" International Journal of Molecular Sciences 15, no. 7: 12523-12542. https://doi.org/10.3390/ijms150712523
APA StyleSilva, R. D. C. F. S., Almeida, D. G., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2014). Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills. International Journal of Molecular Sciences, 15(7), 12523-12542. https://doi.org/10.3390/ijms150712523