Application and Characterization of Polymer Composites

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 15 October 2024 | Viewed by 964

Special Issue Editor


E-Mail Website
Guest Editor
Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
Interests: polymer composites; colorimetric sensors; health monitoring; hydrogels; wearable electronics

Special Issue Information

Dear Colleagues,

The application and characterization of polymer composites has witnessed significant growth and innovation in recent years. This multidisciplinary domain encompasses the design, fabrication, testing, and utilization of polymer composites across various industries, including the aerospace, automotive, construction, renewable energy, biomedical industries, among many others. Characterization plays a pivotal role in understanding and optimizing the performance of polymer composites. Advanced analytical techniques, including microscopy, spectroscopy, mechanical testing, and non-destructive evaluation, enable researchers to elucidate the structure–property relationships of composites. Polymer composites, consisting of a polymer matrix reinforced with fibers, particles, or additives, offer a diverse array of material structures (films, coatings, and hydrogels), making them suitable for a wide range of applications, including soft robots, wearable devices, energy storage materials, artificial skins, and sensors. Future research directions may include smart and multifunctional composites and novel applications in emerging technologies. This dynamic field offers exciting opportunities for researchers, educators, and industry professionals to shape the future of materials and technology.

Dr. Fei Han
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer composites
  • polymer matrix
  • polymer characterization
  • multifunctional composites
  • wearable electronics
  • sensors
  • hydrogels

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 15074 KiB  
Article
Exploring the Impact of Reinforcing Filler Systems on Devulcanizate Composites
by Rounak Ghosh, Christian Mani, Roland Krafczyk, Rupert Schnell, Auke Talma, Anke Blume and Wilma K. Dierkes
Polymers 2024, 16(11), 1448; https://doi.org/10.3390/polym16111448 - 21 May 2024
Viewed by 228
Abstract
Composites revolutionize material performance, fostering innovation and efficiency in diverse sectors. Elastomer-based polymeric composites are crucial for applications requiring superior mechanical strength and durability. Widely applied in automotives, aerospace, construction, and consumer goods, they excel under extreme conditions. Composites based on recycled rubber, [...] Read more.
Composites revolutionize material performance, fostering innovation and efficiency in diverse sectors. Elastomer-based polymeric composites are crucial for applications requiring superior mechanical strength and durability. Widely applied in automotives, aerospace, construction, and consumer goods, they excel under extreme conditions. Composites based on recycled rubber, fortified with reinforcing fillers, represent a sustainable material innovation by repurposing discarded rubber. The integration of reinforcing agents enhances the strength and resilience of this composite, and the recycled polymeric matrix offers an eco-friendly alternative to virgin elastomers, reducing their environmental impact. Devulcanized rubber, with inherently lower mechanical properties than virgin rubber, requires enhancement of its quality for reuse in a circular economy: considerable amounts of recycled tire rubber can only be applied in new tires if the property profile comes close to the one of the virgin rubber. To achieve this, model passenger car tire and whole tire rubber granulates were transformed into elastomeric composites through optimized devulcanization and blending with additional fillers like carbon black and silica–silane. These fillers were chosen as they are commonly used in tire compounding, but they lose their reactivity during their service life and the devulcanization process. Incorporation of 20% (w/w) additional filler enhanced the strength of the devulcanizate composites by up to 15%. Additionally, increased silane concentration significantly further improved the tensile strength, Payne effect, and dispersion by enhancing the polymer–filler interaction through improved silanization. Higher silane concentrations reduced elongation at break and increased crosslink density, as it leads to a stable filler–polymer network. The optimal concentration of a silica–silane filler system for a devulcanizate was found to be 20% silica with 3% silane, showing the best property profile. Full article
(This article belongs to the Special Issue Application and Characterization of Polymer Composites)
Show Figures

Figure 1

Back to TopTop