Natural Antioxidants and Aquatic Animal Health

A special issue of Antioxidants (ISSN 2076-3921).

Deadline for manuscript submissions: 30 June 2024 | Viewed by 8593

Special Issue Editor

Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
Interests: aquatic animals; pharmacology; toxicology

Special Issue Information

Dear Colleagues,

Numerous medicinal plants and their extracts have been confirmed to possess antioxidant properties. They are widely used as drugs or feed additives due to their abundant extraordinary health-beneficial effects on humans and animals.

In aquaculture, farmed animals are unavoidably exposed to an array of stressors that contribute to oxidative stress, including high stocking density, temperature fluctuations, and pathogenic infections. Intense oxidative stress can inhibit growth and development, suppress immunity, and provoke tissue damage and disease outbreaks in aquatic animals. Medicinal plants and their extracts have garnered increasing attention as eco-friendly and efficient alternatives to chemical agents for the purpose of mitigating these effects. They offer a range of beneficial effects for aquatic animals, including stress reduction, growth stimulation, appetite enhancement, and immunity improvement. Over the past few decades, a significant number of studies have focused on the effects of natural antioxidants on the health of aquatic animals. However, several aspects still require elucidation, such as the primary molecular mechanisms and pathways responsible for these beneficial effects. Additionally, understanding the absorption and metabolism of antioxidants, as well as the relationship between natural antioxidants and intestinal microbiota in these animals, also necessitates further investigation.

In this Research Topic, we aim to discuss the relationship natural antioxidants and aquatic animal health. The topics of interest encompass, but are not limited to: (1) the discovery of new natural antioxidants, (2) key mechanisms through which natural antioxidants impact the health of aquatic animals, (3) the anti-stress and disease resistance mechanisms inherent in aquatic animals, and (4) the influence of natural antioxidants on aquatic species based on multi-omics analysis.

Dr. Rui Jia
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural antioxidants
  • oxidative stress
  • medicinal plants
  • aquatic animal
  • feed additives

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

17 pages, 2814 KiB  
Article
Effects of Berberine on Lipid Metabolism, Antioxidant Status, and Immune Response in Liver of Tilapia (Oreochromis niloticus) under a High-Fat Diet Feeding
by Rui Jia, Yiran Hou, Liqiang Zhang, Bing Li and Jian Zhu
Antioxidants 2024, 13(5), 548; https://doi.org/10.3390/antiox13050548 - 29 Apr 2024
Viewed by 319
Abstract
Berberine, a natural alkaloid found abundantly in various medicinal plants, exhibits antioxidative, anti-inflammatory, and lipid metabolism-regulatory properties. Nonetheless, its protective effects and the molecular mechanisms underlying liver injury in fish have not been fully elucidated. The aims of this study were to investigate [...] Read more.
Berberine, a natural alkaloid found abundantly in various medicinal plants, exhibits antioxidative, anti-inflammatory, and lipid metabolism-regulatory properties. Nonetheless, its protective effects and the molecular mechanisms underlying liver injury in fish have not been fully elucidated. The aims of this study were to investigate the antioxidative, anti-inflammatory, and lipid metabolism-regulating effects of berberine against high-fat diet (HFD)-induced liver damage and to clarify the underlying molecular mechanisms. Tilapia were fed diets containing two doses of berberine (50 and 100 mg/kg diet) alongside high fat for 60 days. The results showed that berberine treatments (50 and/or 100 mg/kg) significantly reduced elevated aminotransferases, triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) in the plasma. In the liver, berberine treatments significantly increased the expression of peroxisome proliferator-activated receptor α (pparα) and carnitine palmitoyltransferase 1 (cpt-1) genes, leading to a reduction in lipid accumulation. Meanwhile, berberine treatment suppressed lipid peroxidation formation and enhanced antioxidant capacity. Berberine upregulated the mRNA levels of erythroid 2-related factor 2 (nrf2) and its downstream genes including heme oxygenase 1 (ho-1) and glutathione-S-transferase (gstα). Additionally, berberine attenuated the inflammation by inhibiting the expression of toll-like receptor 2 (tlr2), myeloid differential protein-88 (myd88), relb, and inflammatory cytokines such as interleukin-1β (il-1β), tumor necrosis factor-α (tnf-α), and il-8. In summary, this study suggested that berberine offers protection against HFD-induced liver damage in tilapia via regulating lipid metabolism, antioxidant status, and immune response. This protective effect may be attributed to the modulation of the Nrf2, TLR2/MyD88/NF-κB, and PPARα signaling pathways. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health)
Show Figures

Figure 1

16 pages, 2702 KiB  
Article
Dietary Lysophosphatidylcholine Improves the Uptake of Astaxanthin and Modulates Cholesterol Transport in Pacific White Shrimp Litopenaeus vannamei
by Ziling Song, Yang Liu, Huan Liu, Zhengwei Ye, Qiang Ma, Yuliang Wei, Lindong Xiao, Mengqing Liang and Houguo Xu
Antioxidants 2024, 13(5), 505; https://doi.org/10.3390/antiox13050505 - 23 Apr 2024
Viewed by 404
Abstract
Astaxanthin (AST), functioning as an efficient antioxidant and pigment, is one of the most expensive additives in shrimp feeds. How to improve the uptake efficiency of dietary astaxanthin into farmed shrimp is of significance. The present study investigated the effects of lysophosphatidylcholine (LPC), [...] Read more.
Astaxanthin (AST), functioning as an efficient antioxidant and pigment, is one of the most expensive additives in shrimp feeds. How to improve the uptake efficiency of dietary astaxanthin into farmed shrimp is of significance. The present study investigated the effects of lysophosphatidylcholine (LPC), an emulsifier, on dietary astaxanthin efficiency, growth performance, body color, body composition, as well as lipid metabolism of juvenile Pacific white shrimp (average initial body weight: 2.4 g). Three diets were prepared: control group, the AST group (supplemented with 0.02% AST), and the AST + LPC group (supplemented with 0.02% AST and 0.1% LPC). Each diet was fed to triplicate tanks, and each tank was stocked with 30 shrimp. The shrimp were fed four times daily for eight weeks. The AST supplementation improved the growth of white shrimp, while LPC further promoted the final weight of shrimp, but the whole-shrimp proximate composition and fatty acid composition were only slightly affected by AST and LPC. The LPC supplementation significantly increased the astaxanthin deposition in the muscle. The LPC supplementation significantly increased the shell yellowness of both raw and cooked shrimp compared to the AST group. Moreover, the dietary LPC increased the high-density lipoprotein-cholesterol content but decreased the low-density lipoprotein-cholesterol content in the serum, indicating the possible regulation of lipid and cholesterol transport. The addition of astaxanthin significantly up-regulated the expression of npc2 in the hepatopancreas compared to the control group, while the addition of LPC down-regulated the expression of mttp compared to the AST group. In conclusion, the LPC supplementation could facilitate the deposition of dietary astaxanthin into farmed shrimp and further enlarge the beneficial effects of dietary astaxanthin. LPC may also independently regulate shrimp body color and cholesterol transportation. This was the first investigation of the promoting effects of LPC on dietary astaxanthin efficiency. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health)
Show Figures

Figure 1

19 pages, 6152 KiB  
Article
The Effectiveness of Four Nicotinamide Adenine Dinucleotide (NAD+) Precursors in Alleviating the High-Glucose-Induced Damage to Hepatocytes in Megalobrama amblycephala: Evidence in NAD+ Homeostasis, Sirt1/3 Activation, Redox Defense, Inflammatory Response, Apoptosis, and Glucose Metabolism
by Yanzou Dong, Xi Wang, Luyao Wei, Zishang Liu, Xiaoyu Chu, Wei Xiong, Wenbin Liu and Xiangfei Li
Antioxidants 2024, 13(4), 385; https://doi.org/10.3390/antiox13040385 - 22 Mar 2024
Viewed by 2804
Abstract
The administration of NAD+ precursors is a potential approach to protect against liver damage and metabolic dysfunction. However, the effectiveness of different NAD+ precursors in alleviating metabolic disorders is still poorly elucidated. The current study was performed to compare the effectiveness [...] Read more.
The administration of NAD+ precursors is a potential approach to protect against liver damage and metabolic dysfunction. However, the effectiveness of different NAD+ precursors in alleviating metabolic disorders is still poorly elucidated. The current study was performed to compare the effectiveness of four different NAD+ precursors, including nicotinic acid (NA), niacinamide (NAM), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN) in alleviating high-glucose-induced injury to hepatocytes in a fish model, Megalobrama amblycephala. An in vitro high-glucose model was successfully established to mimic hyperglycemia-induced damage to the liver, which was evidenced by the reduced cell viability, the increased transaminase activity, and the depletion of cellular NAD+ concentration. The NAD+ precursors all improved cell viability, with the maximal effect observed in NR, which also had the most potent NAD+ boosting capacity and a significant Sirt1/3 activation effect. Meanwhile, NR presented distinct and superior effects in terms of anti-oxidative stress, inflammation inhibition, and anti-apoptosis compared with NA, NAM, and NMN. Furthermore, NR could effectively benefit glucose metabolism by activating glucose transportation, glycolysis, glycogen synthesis and the pentose phosphate pathway, as well as inhibiting gluconeogenesis. Moreover, an oral gavage test confirmed that NR presented the most potent effect in increasing hepatic NAD+ content and the NAD+/NADH ratio among four NAD+ precursors. Together, the present study results demonstrated that NR is most effective in attenuating the high-glucose-induced injury to hepatocytes in fish compared to other NAD+ precursors. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health)
Show Figures

Figure 1

20 pages, 6080 KiB  
Article
A High-Fat-Diet-Induced Microbiota Imbalance Correlates with Oxidative Stress and the Inflammatory Response in the Gut of Freshwater Drum (Aplodinotus grunniens)
by Miaomiao Xue, Pao Xu, Haibo Wen, Jianxiang Chen, Qingyong Wang, Jiyan He, Changchang He, Changxin Kong, Xiaowei Li, Hongxia Li and Changyou Song
Antioxidants 2024, 13(3), 363; https://doi.org/10.3390/antiox13030363 - 18 Mar 2024
Viewed by 814
Abstract
Lipids are critical nutrients for aquatic animals, and excessive or insufficient lipid intake can lead to physiological disorders, which further affect fish growth and health. In aquatic animals, the gut microbiota has an important regulatory role in lipid metabolism. However, the effects of [...] Read more.
Lipids are critical nutrients for aquatic animals, and excessive or insufficient lipid intake can lead to physiological disorders, which further affect fish growth and health. In aquatic animals, the gut microbiota has an important regulatory role in lipid metabolism. However, the effects of a high-fat diet on physical health and microbiota diversity in the gut of freshwater drum (Aplodinotus grunniens) are unclear. Therefore, in the present study, a control group (Con, 6%) and a high-fat diet group (HFD, 12%) were established for a 16-week feeding experiment in freshwater drum to explore the physiological changes in the gut and the potential regulatory mechanisms of bacteria. The results indicated that a high-fat diet inhibited antioxidant and immune capacity while increasing inflammation, apoptosis and autophagy in gut cells. Transcriptome analysis revealed significant enrichment in immune-related, apoptosis-related and disease-related pathways. Through 16S rRNA analysis, a total of 31 genus-level differentially abundant bacterial taxa were identified. In addition, a high-fat diet reduced gut microbial diversity and disrupted the ecological balance of the gut microbiota (Ace, Chao, Shannon and Simpson indices). Integrated analysis of the gut microbiota combined with physiological indicators and the transcriptome revealed that gut microbial disorders were associated with intestinal antioxidants, immune and inflammatory responses, cell apoptosis and autophagy. Specifically, genus-level bacterial taxa in Proteobacteria (Plesiomonas, Arenimonas, Erythrobacter and Aquabacteriumb) could serve as potential targets controlling the response to high-fat-diet stimulation. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health)
Show Figures

Figure 1

19 pages, 4964 KiB  
Article
Effects of Alkalinity Exposure on Antioxidant Status, Metabolic Function, and Immune Response in the Hepatopancreas of Macrobrachium nipponense
by Shubo Jin, Mingjia Xu, Xuanbin Gao, Sufei Jiang, Yiwei Xiong, Wenyi Zhang, Hui Qiao, Yan Wu and Hongtuo Fu
Antioxidants 2024, 13(1), 129; https://doi.org/10.3390/antiox13010129 - 21 Jan 2024
Viewed by 873
Abstract
The oriental river prawn Macrobrachium nipponense is an important freshwater economic species in China, producing huge economic benefits. However, M. nipponense shows lower alkali tolerance than fish species, thus genetic selection is urgently needed in order to improve alkali tolerance in this species. [...] Read more.
The oriental river prawn Macrobrachium nipponense is an important freshwater economic species in China, producing huge economic benefits. However, M. nipponense shows lower alkali tolerance than fish species, thus genetic selection is urgently needed in order to improve alkali tolerance in this species. In the present study, the effects of alkalinity exposure on the hepatopancreas of M. nipponense were measured under the alkali concentrations of 0 (control), 4, 8, and 12 mmol/L with the exposure time of 96 h through histological observations, measurement of antioxidant enzymes, metabolic profiling analysis, and transcriptome profiling analysis. The present study identified that the low concentration of alkali treatment (<4 mmol/L) did not result in morphological changes in the hepatopancreas and activity changes in antioxidant enzymes, while high-alkali treatment (>8 mmol/L) damaged the normal structures of the lumen and vacuoles and significantly stimulated the levels of superoxide dismutase, catalase, and total antioxidant capacity, indicating these antioxidant enzymes play essential roles in the protection of the body from the damage caused by the alkali treatment. Metabolic profiling analysis revealed that the main enriched metabolic pathways of differentially expressed metabolites in the present study were consistent with the metabolic pathways caused by environmental stress in plants and other aquatic animals. Transcriptome profiling analysis revealed that the alkali concentration of <8 mmol/L did not lead to significant changes in gene expression. The main enriched metabolic pathways were selected from the comparison between 0 mmol/L vs. 12 mmol/L, and some significantly up-regulated genes were selected from these metabolic pathways, predicting these selected metabolic pathways and genes are involved in the adaptation to alkali treatment in M. nipponense. The expressions of Ras-like GTP-binding protein, Doublesex and mab-3 related transcription factor 1a, and Hypothetical protein JAY84 are sensitive to changes in alkali concentrations, suggesting these three genes participated in the process of alkali adaptation in M. nipponense. The present study identified the effects of alkalinity exposure on the hepatopancreas of M. nipponense, including the changes in antioxidant status and the expressions of metabolites and genes, contributing to further studies of alkali tolerance in this species. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health)
Show Figures

Figure 1

18 pages, 2869 KiB  
Article
Optimizing Anesthetic Practices for Mud Crab: A Comparative Study of Clove Oil, MS-222, Ethanol, and Magnesium Chloride
by Lulu Zhu, Shanshan Qi, Ce Shi, Shujian Chen, Yangfang Ye, Chunlin Wang, Changkao Mu, Ronghua Li, Qingyang Wu, Xiaopeng Wang and Yueyue Zhou
Antioxidants 2023, 12(12), 2124; https://doi.org/10.3390/antiox12122124 - 16 Dec 2023
Cited by 1 | Viewed by 1005
Abstract
Anesthesia serves as an effective method to mitigate the stress response in aquatic animals during aquaculture and product transportation. In this study, we assessed the anesthetic efficacy of clove oil, tricaine methane-sulfonate (MS-222), ethanol, and magnesium chloride by anesthesia duration, recovery time, 24-hour [...] Read more.
Anesthesia serves as an effective method to mitigate the stress response in aquatic animals during aquaculture and product transportation. In this study, we assessed the anesthetic efficacy of clove oil, tricaine methane-sulfonate (MS-222), ethanol, and magnesium chloride by anesthesia duration, recovery time, 24-hour survival rate, and the behavior of mud crabs (Scylla paramamosain). Additionally, the optimal anesthetic concentration for varying body weights of mud crabs was also investigated. The results revealed that clove oil emerged as the optimal anesthetic for mud crabs, with a 24-hour survival rate surpassing those observed in MS-222 and magnesium chloride treatments. Ethanol caused amputation and hyperactivity in mud crabs. Regression analyses between the optimal anesthetic concentration of clove oil and the weight categories of 0.03–27.50 g and 27.50–399.73 g for mud crabs yielded the following equations: y = 0.0036 x3 − 0.1629 x2 + 1.7314 x + 4.085 (R2 = 0.7115) and y = 0.0437 x + 2.9461 (R2 = 0.9549). Clove oil exhibited no significant impact on serum cortisol, glucose, lactate content, aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities, or superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels in mud crabs across different treatment groups. Anesthesia induced by clove oil in mud crabs resulted in an increase in inhibitory neurotransmitters such as glycine. However, the recovery from anesthesia was associated with elevated levels of the excitatory neurotransmitters L-aspartic acid and glutamate. In conclusion, clove oil proves to be a safe and optimal anesthetic agent for mud crabs, exerting no physiological stress on the species. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health)
Show Figures

Figure 1

26 pages, 4789 KiB  
Article
Multi-Omics Analysis to Understand the Effects of Dietary Proanthocyanidins on Antioxidant Capacity, Muscle Nutrients, Lipid Metabolism, and Intestinal Microbiota in Cyprinus carpio
by Rui Jia, Yiran Hou, Wenrong Feng, Munkhjargal Nomingerel, Bing Li and Jian Zhu
Antioxidants 2023, 12(12), 2095; https://doi.org/10.3390/antiox12122095 - 10 Dec 2023
Cited by 1 | Viewed by 1351
Abstract
Proanthocyanidins (Pros), a natural polyphenolic compound found in grape seed and other plants, have received significant attention as additives in animal feed. However, the specific mechanism by which Pros affect fish health remains unclear. Therefore, the aim of this study was to investigate [...] Read more.
Proanthocyanidins (Pros), a natural polyphenolic compound found in grape seed and other plants, have received significant attention as additives in animal feed. However, the specific mechanism by which Pros affect fish health remains unclear. Therefore, the aim of this study was to investigate the potential effects of dietary Pro on common carp by evaluating biochemical parameters and multi-omics analysis. The results showed that Pro supplementation improved antioxidant capacity and the contents of polyunsaturated fatty acids (n-3 and n-6) and several bioactive compounds. Transcriptomic analysis demonstrated that dietary Pro caused an upregulation of the sphingolipid catabolic process and the lysosome pathway, while simultaneously downregulating intestinal cholesterol absorption and the PPAR signaling pathway in the intestines. Compared to the normal control (NC) group, the Pro group exhibited higher diversity in intestinal microbiota and an increased relative abundance of Cetobacterium and Pirellula. Furthermore, the Pro group had a lower Firmicutes/Bacteroidetes ratio and a decreased relative abundance of potentially pathogenic bacteria. Collectively, dietary Pro improved antioxidant ability, muscle nutrients, and the diversity and composition of intestinal microbiota. The regulation of lipid metabolism and improvement in muscle nutrients were linked with changes in the intestinal microbiota. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health)
Show Figures

Figure 1

Other

Jump to: Research

14 pages, 991 KiB  
Brief Report
H2O2-Induced Oxidative Stress Responses in Eriocheir sinensis: Antioxidant Defense and Immune Gene Expression Dynamics
by Qinghong He, Wenrong Feng, Xue Chen, Yuanfeng Xu, Jun Zhou, Jianlin Li, Pao Xu and Yongkai Tang
Antioxidants 2024, 13(5), 524; https://doi.org/10.3390/antiox13050524 - 26 Apr 2024
Viewed by 434
Abstract
Eriocheir sinensis, a key species in China’s freshwater aquaculture, is threatened by various diseases, which were verified to be closely associated with oxidative stress. This study aimed to investigate the response of E. sinensis to hydrogen peroxide (H2O2)-induced [...] Read more.
Eriocheir sinensis, a key species in China’s freshwater aquaculture, is threatened by various diseases, which were verified to be closely associated with oxidative stress. This study aimed to investigate the response of E. sinensis to hydrogen peroxide (H2O2)-induced oxidative stress to understand the biological processes behind these diseases. Crabs were exposed to different concentrations of H2O2 and their antioxidant enzyme activities and gene expressions for defense and immunity were measured. Results showed that activities of antioxidant enzymes—specificallysuperoxide dismutase (SOD), catalase (CAT), total antioxidant capacity(T-AOC), glutathione (GSH), and glutathione peroxidase (GSH-Px)—varied with exposure concentration and duration, initially increasing then decreasing. Notably, SOD, GSH-Px, and T-AOC activities dropped below control levels at 96 h. Concurrently, oxidative damage markers, including malondialdehyde (MDA), H2O2, and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels, increased with exposure duration. The mRNA expression of SOD, CAT, and GSH-Px also showed an initial increase followed by a decrease, peaking at 72 h. The upregulation of phenoloxidaseloxidase (proPO) and peroxinectin (PX) was also detected, but proPO was suppressed under high levels of H2O2. Heat shock protein 70 (HSP70) expression gradually increased with higher H2O2 concentrations, whereas induced nitrogen monoxide synthase (iNOS) was upregulated but decreased at 96 h. These findings emphasize H2O2’s significant impact on the crab’s oxidative and immune responses, highlighting the importance of understanding cellular stress responses for disease prevention and therapy development. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health)
Show Figures

Figure 1

Back to TopTop