Next Article in Journal
Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation
Previous Article in Journal
Hyperspectral Unmixing via Double Abundance Characteristics Constraints Based NMF
Article Menu

Export Article

Open AccessTechnical Note
Remote Sens. 2016, 8(6), 465; doi:10.3390/rs8060465

Assessing the Accuracy of High Resolution Digital Surface Models Computed by PhotoScan® and MicMac® in Sub-Optimal Survey Conditions

1
Laboratoire Domaines Océaniques—UMR 6538, Université de Bretagne Occidentale, IUEM, Technopôle Brest-Iroise, Rue Dumont D’Urville, F-29280 Plouzané, France
2
Laboratoire de Géologie de Lyon—UMR 5276, Université Claude Bernard Lyon 1, Campus de la Doua, 2 rue Raphaël Dubois, F-69622 Villeurbanne, France
3
CEREMA—Centre d’Etudes et d’expertise sur les Risques, l’Environnement, la Mobilité et l’Aménagement, DTecEMF, F-29280 Plouzané, France
*
Author to whom correspondence should be addressed.
Academic Editors: Guoqing Zhou and Prasad S. Thenkabail
Received: 1 February 2016 / Revised: 6 May 2016 / Accepted: 25 May 2016 / Published: 1 June 2016
View Full-Text   |   Download PDF [14204 KB, uploaded 1 June 2016]   |  

Abstract

For monitoring purposes and in the context of geomorphological research, Unmanned Aerial Vehicles (UAV) appear to be a promising solution to provide multi-temporal Digital Surface Models (DSMs) and orthophotographs. There are a variety of photogrammetric software tools available for UAV-based data. The objective of this study is to investigate the level of accuracy that can be achieved using two of these software tools: Agisoft PhotoScan® Pro and an open-source alternative, IGN© MicMac®, in sub-optimal survey conditions (rugged terrain, with a large variety of morphological features covering a range of roughness sizes, poor GPS reception). A set of UAV images has been taken by a hexacopter drone above the Rivière des Remparts, a river on Reunion Island. This site was chosen for its challenging survey conditions: the topography of the study area (i) involved constraints on the flight plan; (ii) implied errors on some GPS measurements; (iii) prevented an optimal distribution of the Ground Control Points (GCPs) and; (iv) was very complex to reconstruct. Several image processing tests are performed with different scenarios in order to analyze the sensitivity of each software package to different parameters (image quality, numbers of GCPs, etc.). When computing the horizontal and vertical errors within a control region on a set of ground reference targets, both methods provide rather similar results. A precision up to 3–4 cm is achievable with these software packages. The DSM quality is also assessed over the entire study area comparing PhotoScan DSM and MicMac DSM with a Terrestrial Laser Scanner (TLS) point cloud. PhotoScan and MicMac DSM are also compared at the scale of particular features. Both software packages provide satisfying results: PhotoScan is more straightforward to use but its source code is not open; MicMac is recommended for experimented users as it is more flexible. View Full-Text
Keywords: image processing; SfM photogrammetry software; Digital Surface Model; UAV; orthophoto; accuracy assessment image processing; SfM photogrammetry software; Digital Surface Model; UAV; orthophoto; accuracy assessment
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Jaud, M.; Passot, S.; Le Bivic, R.; Delacourt, C.; Grandjean, P.; Le Dantec, N. Assessing the Accuracy of High Resolution Digital Surface Models Computed by PhotoScan® and MicMac® in Sub-Optimal Survey Conditions. Remote Sens. 2016, 8, 465.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top