11 pages, 876 KiB  
Article
Retention Forestry Supports Bird Diversity in Managed, Temperate Hardwood Floodplain Forests
by Ivo Machar, Martin Schlossarek, Vilem Pechanec, Lubos Uradnicek, Ludek Praus and Ahmet Sıvacıoğlu
Forests 2019, 10(4), 300; https://doi.org/10.3390/f10040300 - 1 Apr 2019
Cited by 14 | Viewed by 3384
Abstract
The retention forestry approach is considered as one of the potentially effective tools for sustainable forest management for conservation of biodiversity in managed temperate and boreal forests. Retention of old-growth forest structures (e.g., very large old living trees) in forest stands during clear-cutting [...] Read more.
The retention forestry approach is considered as one of the potentially effective tools for sustainable forest management for conservation of biodiversity in managed temperate and boreal forests. Retention of old-growth forest structures (e.g., very large old living trees) in forest stands during clear-cutting provides maintenance of key habitats for many old-growth forest interior-species. Most of ecological studies on green tree retention (GTR) consequences for biodiversity have been focused on birds. However, the long-term studies of GTR impacts on forest birds are very poor. In this paper, we focused on assessment of the long-term consequences of leaving legacy oak trees on the cut areas for bird diversity 18–22 years after clear-cutting in managed temperate European hardwood floodplain forests. Results based on bird counting using mapping of bird nesting territories revealed a key importance of legacy oak trees for maintaining bird diversity in the study area. These results are widely applicable for managed temperate hardwood forests with serious dominance of oak (Quercus sp.) in forest stands. Legacy oak trees in this habitat type are keystone structures for bird diversity. Retention approach focused on these trees is potentially an important conservation tool for preserving forest bird diversity and other associated species in temperate hardwood forests managed by clear-cutting. Full article
(This article belongs to the Special Issue Effects of Forest Management Practices on Forest Biodiversity)
Show Figures

Figure 1

14 pages, 1889 KiB  
Article
Changes in the Soil Bacterial Community in a Chronosequence of Temperate Walnut-Based Intercropping Systems
by Pengxiang Gao, Xiaofeng Zheng, Lai Wang, Bin Liu and Shuoxin Zhang
Forests 2019, 10(4), 299; https://doi.org/10.3390/f10040299 - 31 Mar 2019
Cited by 27 | Viewed by 4082
Abstract
Agroforestry (tree-based intercropping) is regarded as a promising practice in sustainable agricultural management. However, the impacts of converting cropland to an agroforestry system on microbial communities remain poorly understood. In this study, we assessed the soil bacterial communities in conventional wheat monoculture systems [...] Read more.
Agroforestry (tree-based intercropping) is regarded as a promising practice in sustainable agricultural management. However, the impacts of converting cropland to an agroforestry system on microbial communities remain poorly understood. In this study, we assessed the soil bacterial communities in conventional wheat monoculture systems and a chronosequence (5–14 years) walnut-wheat agroforestry system through the high-throughput sequencing of 16S rRNA genes to investigate the effect of agroforestry age on soil bacterial communities and the correlation between soil properties and bacterial communities in the agroecosystem. Our results demonstrate that establishing and developing walnut tree-based agroforestry increased soil bacterial diversity and changed bacterial community structure. Firmicutes, Proteobacteria, Actinobacteria and Acidobacteria were the dominant soil bacterial phyla and Bacillus was the dominant genus. Crop monoculture systems were characterized by the Bacillus (Firmicutes)-dominated microbial community. The relative abundance of Bacillus decreased with agroforestry age; however, subgroups of Proteobacteria and Actinobacteria increased. Of the selected soil physicochemical properties, soil pH and bulk density were significantly correlated with bacterial alpha diversity, and soil pH and organic carbon were the principal drivers in shaping the soil microbial structure as revealed by redundancy analysis (RDA). Full article
(This article belongs to the Special Issue Relationship between Forest Biodiversity and Soil Functions)
Show Figures

Figure 1

20 pages, 3338 KiB  
Article
Analysis of Error Structure for Additive Biomass Equations on the Use of Multivariate Likelihood Function
by Lei Cao and Haikui Li
Forests 2019, 10(4), 298; https://doi.org/10.3390/f10040298 - 30 Mar 2019
Cited by 11 | Viewed by 2637
Abstract
Research Highlights: this study developed additive biomass equations respectively from nonlinear regression (NLR) on original data and linear regression (LR) on a log-transformed scale by nonlinear seemingly unrelated regression (NSUR). To choose appropriate regression form, the error structures (additive vs. multiplicative) of [...] Read more.
Research Highlights: this study developed additive biomass equations respectively from nonlinear regression (NLR) on original data and linear regression (LR) on a log-transformed scale by nonlinear seemingly unrelated regression (NSUR). To choose appropriate regression form, the error structures (additive vs. multiplicative) of compatible biomass equations were determined on the use of the multivariate likelihood function which extended the method of likelihood analysis to the general occasion of a contemporaneously correlated set of equations. Background and Objectives: both NLR and LR could yield the expected predictions for allometric scaling relationship. In recent studies, there are vigorous debates on which regression (NLR or LR) should apply. The main aim of this paper is to analyze the error structure of a compatible system of biomass equations to choose more appropriate regression. Materials and Methods: based on biomass data of 270 trees for three tree species, additive biomass equations were developed respectively for NLR and LR by NSUR. Multivariate likelihood functions were computed to determine the error structure based on the multivariate probability density function. The anti-log correction factor which kept the additive property was obtained separately using the arithmetic and weighted average of basic correction factors from each equation to assess two model specifications on the comparably original scale. Results: the assumption of additive error structure was well favored for an additive system of three species based on the joint likelihood function. However, the error structure of each component equation calculated from the conditional likelihood function for compatible equations might be different. The performance of additive equations corrected by a weighted average of basic correction factor from each component equation performed better than that of the arithmetic average and held good property of compatibility after corrected. Conclusions: NLR provided a better fit for additive biomass equations of three tree species. Additive equations which confirmed the responding assumption of error structure performed better. The joint likelihood function on the use of the multivariate likelihood function could be used to analyze the error structure of the additive system which was a result of a tradeoff for each component equation. Based on the average of correction factors from each component equation to correct the bias of additive equations was feasible for the hold of additive property, which might lead to a poor correction effect for some component equation. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

18 pages, 5165 KiB  
Article
GIS-Based Multi-Criteria Assessment and Seasonal Impact on Plantation Forest Landscape Visual Sensitivity
by Huijuan Yang, Yongning Li, Zhidong Zhang, Zhongqi Xu and Xuanrui Huang
Forests 2019, 10(4), 297; https://doi.org/10.3390/f10040297 - 30 Mar 2019
Cited by 12 | Viewed by 5049
Abstract
Visual sensitivity assessments identify the location of the high-sensitivity areas in terms of visual change. Studying the visual sensitivity of plantation forest landscapes and their seasonal changes can help resolve increasingly frequent conflicts between tourism and forest management activities, in the context of [...] Read more.
Visual sensitivity assessments identify the location of the high-sensitivity areas in terms of visual change. Studying the visual sensitivity of plantation forest landscapes and their seasonal changes can help resolve increasingly frequent conflicts between tourism and forest management activities, in the context of the multi-functional management of plantation forests. In this study, we used the geographic information system (GIS) and multi-criteria evaluation (MCE) methods combined with the analytic hierarchy process (AHP) to perform a visual sensitivity evaluation. Nine map-based criteria were selected, and the visual sensitivity of summer and autumn values were calculated, using data from sources including inventory data for forest management planning and design, digital elevation model (DEM), and aerial photographs. Vegetation uniformity (VU) and color diversity (CD) indices were constructed using three patch-level-based landscape indices, including area (AREA), fractal dimension index (FRAC), and proximity (PROX), to visualize the summer and autumn vegetation characteristics of a plantation forest landscape. We conducted a case study on the Saihanba Mechanical Forest Plantation, China’s largest forest plantation. The results were evaluated by experts, confirming the method to be reliable. This study provides an accurate, objective, and visualized evaluation method for the visual sensitivity of plantations for forest management units at the landscape scale. In analyzing the visual sensitivity of plantation forest landscapes, appropriate criteria, e.g., uniformity or diversity should be selected based on forest vegetation characteristics. When identifying high-sensitivity regions, it is necessary to simultaneously analyze areas with high visual sensitivity in different seasons and then superimpose the results. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

18 pages, 5717 KiB  
Article
The Use of Low-Altitude UAV Imagery to Assess Western Juniper Density and Canopy Cover in Treated and Untreated Stands
by Nicole Durfee, Carlos G. Ochoa and Ricardo Mata-Gonzalez
Forests 2019, 10(4), 296; https://doi.org/10.3390/f10040296 - 29 Mar 2019
Cited by 26 | Viewed by 5691
Abstract
Monitoring vegetation characteristics and ground cover is crucial to determine appropriate management techniques in western juniper (Juniperus occidentalis Hook.) ecosystems. Remote-sensing techniques have been used to study vegetation cover; yet, few studies have applied these techniques using unmanned aerial vehicles (UAV), specifically [...] Read more.
Monitoring vegetation characteristics and ground cover is crucial to determine appropriate management techniques in western juniper (Juniperus occidentalis Hook.) ecosystems. Remote-sensing techniques have been used to study vegetation cover; yet, few studies have applied these techniques using unmanned aerial vehicles (UAV), specifically in areas of juniper woodlands. We used ground-based data in conjunction with low-altitude UAV imagery to assess vegetation and ground cover characteristics in a paired watershed study located in central Oregon, USA. The study was comprised of a treated watershed (most juniper removed) and an untreated watershed. Research objectives were to: (1) evaluate the density and canopy cover of western juniper in a treated (juniper removed) and an untreated watershed; and, (2) assess the effectiveness of using low altitude UAV-based imagery to measure juniper-sapling population density and canopy cover. Ground- based measurements were used to assess vegetation features in each watershed and as a means to verify analysis from aerial imagery. Visual imagery (red, green, and blue wavelengths) and multispectral imagery (red, green, blue, near-infrared, and red-edge wavelengths) were captured using a quadcopter-style UAV. Canopy cover in the untreated watershed was estimated using two different methods: vegetation indices and support vector machine classification. Supervised classification was used to assess juniper sapling density and vegetation cover in the treated watershed. Results showed that vegetation indices that incorporated near-infrared reflectance values estimated canopy cover within 0.7% to 4.1% of ground-based calculations. Canopy cover estimates at the untreated watershed using supervised classification were within 0.9% to 2.3% of ground-based results. Supervised classification applied to fall imagery using multispectral bands provided the best estimates of juniper sapling density compared to imagery taken in the summer or to using visual imagery. Study results suggest that low-altitude multispectral imagery obtained using small UAV can be effectively used to assess western juniper density and canopy cover. Full article
(This article belongs to the Special Issue Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019)
Show Figures

Figure 1

12 pages, 2246 KiB  
Article
High Precision Altimeter Demonstrates Simplification and Depression of Microtopography on Seismic Lines in Treed Peatlands
by Cassondra J. Stevenson, Angelo T. Filicetti and Scott E. Nielsen
Forests 2019, 10(4), 295; https://doi.org/10.3390/f10040295 - 28 Mar 2019
Cited by 32 | Viewed by 3880
Abstract
Seismic lines are linear forest clearings used for oil and gas exploration. The mechanical opening of forests for these narrow (3–10 meter) lines is believed to simplify microtopographic complexity and depress local topographic elevation. In treed peatlands, simplified microtopography limits tree regeneration by [...] Read more.
Seismic lines are linear forest clearings used for oil and gas exploration. The mechanical opening of forests for these narrow (3–10 meter) lines is believed to simplify microtopographic complexity and depress local topographic elevation. In treed peatlands, simplified microtopography limits tree regeneration by removing favourable microsites (hummocks) for tree recruitment and increasing the occurrence of flooding that reduces survival of tree seedlings. Little, however, has been done to quantify the microtopography of seismic lines and specifically the degree of alteration. Here, we measured microtopography at 102 treed peatland sites in northeast Alberta, Canada using a high precision hydrostatic altimeter (ZIPLEVEL PRO-2000) that measured variation in local topography of seismic lines and adjacent paired undisturbed forests. Sites were separated into four peatland ecosite types and the presence or absence of recent (<22 years) wildfires. Paired t-tests were used to compare microtopographic complexity and depression depth of seismic lines compared with adjacent forests. Microtopographic complexity on seismic lines was simplified by 20% compared to adjacent stands with no significant change between recently burned and unburned sites, nor between ecosites. Not only were seismic lines simplified, but they were also depressed in elevation by an average of 8 cm compared to adjacent forests with some minor variation between ecosites observed, but again not with recent wildfires. Thus, simplification of microtopographic complexity and the creation of depressions can persist decades after initial disturbance with some differences between peatland ecosites, implying the need for ecosite-specific restoration of topographic complexity. The importance of microtopography for tree regeneration on seismic lines remains an important question for reforestation of these disturbances and thus long-term recovery of habitat for species dependent on undisturbed peatlands, including woodland caribou. Full article
(This article belongs to the Special Issue Forest Biodiversity Conservation with Remote Sensing Techniques)
Show Figures

Figure 1

16 pages, 1262 KiB  
Article
Armillaria altimontana Is Associated with Healthy Western White Pine (Pinus monticola): Potential in Situ Biological Control of the Armillaria Root Disease Pathogen, A. solidipes
by Marcus V. Warwell, Geral I. McDonald, John W. Hanna, Mee-Sook Kim, Bradley M. Lalande, Jane E. Stewart, Andrew T. Hudak and Ned B. Klopfenstein
Forests 2019, 10(4), 294; https://doi.org/10.3390/f10040294 - 28 Mar 2019
Cited by 16 | Viewed by 3820
Abstract
Research Highlights: Two genets of Armillaria altimontana Brazee, B. Ortiz, Banik, and D.L. Lindner and five genets of Armillaria solidipes Peck (as A. ostoyae [Romagnesi] Herink) were identified and spatially mapped within a 16-year-old western white pine (Pinus monticola Doug.) plantation, which [...] Read more.
Research Highlights: Two genets of Armillaria altimontana Brazee, B. Ortiz, Banik, and D.L. Lindner and five genets of Armillaria solidipes Peck (as A. ostoyae [Romagnesi] Herink) were identified and spatially mapped within a 16-year-old western white pine (Pinus monticola Doug.) plantation, which demonstrated distinct spatial distribution and interspecific associations. Background and Objectives: A. solidipes and A. altimontana frequently co-occur within inland western regions of the contiguous USA. While A. solidipes is well-known as a virulent primary pathogen that causes root disease on diverse conifers, little has been documented on the impact of A. altimontana or its interaction with A. solidipes on growth, survival, and the Armillaria root disease of conifers. Materials and Methods: In 1971, a provenance planting of P. monticola spanning 0.8 ha was established at the Priest River Experimental Forest in northern Idaho, USA. In 1987, 2076 living or recently dead trees were measured and surveyed for Armillaria spp. to describe the demography and to assess the potential influences of Armillaria spp. on growth, survival, and the Armillaria root disease among the study trees. Results: Among the study trees, 54.9% were associated with Armillaria spp. The genets of A. altimontana and A. solidipes comprised 82.7% and 17.3% of the sampled isolates (n = 1221) from the study plot, respectively. The mapped distributions showed a wide, often noncontiguous, spatial span of individual Armillaria genets. Furthermore, A. solidipes was found to be uncommon in areas dominated by A. altimontana. The trees colonized by A. solidipes were associated with a lower tree growth/survival and a substantially higher incidence of root disease than trees colonized only by A. altimontana or trees with no colonization by Armillaria spp. Conclusions: The results demonstrate that A. altimontana was not harmful to P. monticola within the northern Idaho planting. In addition, the on-site, species-distribution patterns suggest that A. altimontana acts as a long-term, in situ biological control of A. solidipes. The interactions between these two Armillaria species appear critical to understanding the Armillaria root disease in this region. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 2688 KiB  
Article
Differentiation and Non-Linear Responses in Temporal Phenotypic Plasticity of Seasonal Phenophases in a Common Garden of Crataegus monogyna Jacq.
by Kristine Vander Mijnsbrugge and Astrid Janssens
Forests 2019, 10(4), 293; https://doi.org/10.3390/f10040293 - 27 Mar 2019
Cited by 9 | Viewed by 3186
Abstract
Phenology in perennial plants implies the temporal occurrence of biological events throughout the year. Heritable phenotypic plasticity in the timing of the phenophases can be of importance in the adaptation of woody species to a quickly changing environment. We observed the timing of [...] Read more.
Phenology in perennial plants implies the temporal occurrence of biological events throughout the year. Heritable phenotypic plasticity in the timing of the phenophases can be of importance in the adaptation of woody species to a quickly changing environment. We observed the timing of bud burst, flower opening, leaf senescence and leaf fall in two successive years in a common garden of Crataegus monogyna Jacq. in Belgium, consisting of six local and five non-local provenances. Data were processed with cumulative logistic mixed models. Strong auto-correlation was present among the spring phenophases as well as among the autumnal phenophases, with spring phenophases being negatively correlated with fall phenophases. The strongest between-provenance differentiation was found for the timing of bud burst in spring, followed by flower opening and finally by leaf senescence and leaf fall. Warmer spring temperatures in March 2017 advanced the timing of bud burst, and to a lesser extent of flower opening, in all provenances compared to 2016. However, the advancement was non-linear among the provenances, with the lower latitude provenances being relatively less early and the higher elevation provenances being more late than the local provenances in this year. It can be hypothesized that non-local provenances display larger temporal phenotypic plastic responses in the timing of their spring phenophases compared to local provenances when temperatures in the common garden deviate more from their home-sites. Full article
Show Figures

Figure 1