- Article
Numerical Study of a Parabolically Deformed Beam for Solar Concentration Applications
- Rodolfo Y. Salas-Bernal,
- Pablo Sosa-Flores and
- Ricardo A. Pérez-Enciso
- + 4 authors
Recent advances in design, manufacturing and development techniques have been very relevant to making solar collectors feasible for production in a variety of applications. In the field of concentrated solar thermal technologies, several techniques have been developed to achieve high levels of radiation concentration. The generation of concave curvature geometry through the polishing of the reflective surface or through specialized machining is one of the most common methods. However, the way in which these bends are obtained can vary significantly, depending on the required quality of optical concentration for the application. This study presents a simple parametric technique to achieve a parabolic curvature for solar concentration applications. To do this, a controlled bending deformation was applied to a metal hollow profile beam supported by a pin and roller at each of the ends, and only two symmetric point loads were applied to generate a bending moment to induce a bending of a curved shape. It was found that, for a given load configuration, a parabolic geometry was generated along a partial center section of the beam. The analysis carried out showed that under the load configuration analyzed, up to 66% of the beam length adopted a fully parabolic geometry. The technique proposed in this work allows for the creation of parabolas with variable focal distances, offering versatility in the design of solar concentrating systems. It also allows corrective adjustments to be made during the assembly of the complete solar concentrator system.
12 February 2026







