- Article
Sdr as a Key Roughness Parameter for Monitoring the Temporal Stability of Measuring Instruments: Short- and Extended-Time Uncertainties
- Clément Moreau,
- Julie Lemesle and
- Maxence Bigerelle
- + 4 authors
This study investigates two measurement campaigns: extended time and short time, to determine the stability of roughness measurements, focusing on the Sdr parameter. Extended-time measurements were conducted using the most sensitive instrument available to follow metrological fluctuations. The results revealed that Sdr exhibits the clearest trend and the highest dispersion among all roughness parameters, making it the most relevant indicator for tracking temporal deviations. Other parameters, such as Sa, Sq, and Sds, also emerged as potential candidates. These results were validated through a stability analysis (SI), showing that Sdr is the worst stable roughness parameter. To ensure the robustness of the findings and be closer to the real conditions, a short-time assessment was performed using a dedicated measurement plan performed on multiple instruments. The results confirmed that measurement fluctuations are instrument-dependent, but similar results are found across the same technologies (CSI(S) and CSI(B)). The short-time study included a quality inspection, a drift/stability analysis employing AR (2) models on the time series data systematically and a relevance measurement assessment using ANOVA. The study was conducted using a full-scale roughness analysis and could potentially be applied to a multiscale approach. These findings highlight the ability of Sdr to monitor metrological fluctuation during a long-time acquisition and according to a dedicated measurement plan.
9 February 2026






